
Christopher Gandrud

Reproducible Research
with R and RStudio (Third
Edition)

Contents

Preface ix

About the Author xiii

Stylistic Conventions xv

Additional Resources xvii

I Getting Started 1

1 Introducing Reproducible Research 3
1.1 What Is Reproducible Research? 4
1.2 Why Should Research Be Reproducible? 5

1.2.1 For science . 5
1.2.2 For you . 6

1.3 Who Should Read This Book? 8
1.3.1 Academic researchers 9
1.3.2 Students . 9
1.3.3 Instructors . 9
1.3.4 Editors . 10
1.3.5 Private sector researchers 10

1.4 The Tools of Reproducible Research 11
1.4.1 Why Use R, knitr/R Markdown, and RStudio for Re-

producible Research? 12
1.5 Installing the main software 15

1.5.1 Installing markup languages 15
1.5.2 GNU Make . 16
1.5.3 Other tools . 16

1.6 Book Overview . 17
1.6.1 How to read this book 18
1.6.2 Reproduce this book 19
1.6.3 Contents overview . 19

2 Getting Started with Reproducible Research 23
2.1 The Big Picture: A Workflow for Reproducible Research . . 23

2.1.1 Reproducible theory 24
2.2 Practical Tips for Reproducible Research 25

iii

iv Contents

2.2.1 Document everything! 26
2.2.2 Everything is a (text) file 27
2.2.3 All files should be human readable 28
2.2.4 Explicitly tie your files together 30
2.2.5 Have a plan to organize, store, and make your files avail-

able . 31

3 Getting Started with R, RStudio, and knitr/R Markdown 33
3.1 Using R: The Basics . 33

3.1.1 Objects . 34
3.1.2 Functions . 42
3.1.3 The workspace and history 45
3.1.4 R history . 46
3.1.5 Global R options . 46
3.1.6 Installing new packages and loading functions 47

3.2 Using RStudio . 47
3.3 Using knitr and R Markdown: The Basics 50

3.3.1 What knitr does . 50
3.3.2 What rmarkdown does 50
3.3.3 File extensions . 53
3.3.4 Code chunks . 53
3.3.5 Global chunk options 55
3.3.6 knitr package options 57
3.3.7 Hooks . 57
3.3.8 knitr, R Markdown, and RStudio 57
3.3.9 knitr and R . 61
3.3.10 R Markdown and R 63

Appendix: Jupyter Interactive Notebooks 65

Appendix: knitr and Lyx 67

4 Getting Started with File Management 69
4.1 File Paths and Naming Conventions 70

4.1.1 Root directories . 70
4.1.2 Sub-directories and parent directories 70
4.1.3 Working directories . 71
4.1.4 Absolute vs. relative paths 71
4.1.5 Spaces in directory and file names 73

4.2 Organizing Your Research Project 73
4.3 Organizing Research with RStudio Projects 74
4.4 R File Manipulation Functions 75
4.5 Unix-like Shell Commands for File Management 79
4.6 File Navigation in RStudio 83

II Data Gathering and Storage 85

Contents v

5 Storing, Collaborating, Accessing Files, and Versioning 87
5.1 Saving Data in Reproducible Formats 88
5.2 Storing Your Files in the Cloud: Dropbox 89

5.2.1 Storage . 90
5.2.2 Accessing data . 91
5.2.3 Collaboration . 92
5.2.4 Version control . 92

5.3 Storing Your Files in the Cloud: GitHub 93
5.3.1 Setting up GitHub: Basic 95
5.3.2 Version control with Git 96
5.3.3 Remote storage on GitHub 104
5.3.4 Accessing on GitHub 106
5.3.5 Summing up the GitHub workflow 109

5.4 RStudio and GitHub . 110
5.4.1 Setting up Git/GitHub with Projects 110
5.4.2 Using Git in RStudio Projects 111

6 Gathering Data with R 113
6.1 Organize Your Data Gathering: Makefiles 113

6.1.1 R Make-like files . 114
6.1.2 GNU Make . 115

6.2 Importing Locally Stored Data Sets 121
6.3 Importing Data Sets from the Internet 122

6.3.1 Data from non-secure (http) URLs 122
6.3.2 Data from secure (https) URLs 123
6.3.3 Compressed data stored online 123
6.3.4 Data APIs and feeds 124

6.4 Advanced Automatic Data Gathering: Web Scraping 126

7 Preparing Data for Analysis 129
7.1 Cleaning Data for Merging 129

7.1.1 Get a handle on your data 129
7.1.2 Reshaping data . 132
7.1.3 Renaming variables . 135
7.1.4 Ordering data . 136
7.1.5 Subsetting data . 137
7.1.6 Recoding string/numeric variables 139
7.1.7 Creating new variables from old 140
7.1.8 Changing variable types 143

7.2 Merging Data Sets . 143
7.2.1 Binding . 143
7.2.2 Merging data frames 144
7.2.3 Duplicate columns . 147

Appendix 149

vi Contents

III Analysis and Results 151

8 Statistical Modeling and knitr/R Markdown 153
8.1 Incorporating Analyses into the Markup 154

8.1.1 Full code chunks . 154
8.1.2 Showing code and results inline 157
8.1.3 Dynamically including non-R code in code chunks . . 159

8.2 Dynamically Including Modular Analysis Files 159
8.2.1 Source from a local file 160
8.2.2 Source from a URL . 162

8.3 Reproducibly Random: set.seed() 163
8.4 Computationally Intensive Analyses 164

9 Showing Results with Tables 167
9.1 Basic knitr Syntax for Tables 168
9.2 Table Basics . 168

9.2.1 Tables in LaTeX . 169
9.2.2 Tables in Markdown/HTML 173

9.3 Creating Tables from Supported Class R Objects 177
9.3.1 kable for Markdown and LaTeX 177
9.3.2 xtable for LaTeX and HTML 178
9.3.3 texreg for LaTeX and HTML 181
9.3.4 Fitting large tables in LaTeX 184
9.3.5 xtable with non-supported class objects 185
9.3.6 Creating variable description documents with xtable . 187

10 Showing Results with Figures 191
10.1 Including Non-knitted Graphics 192

10.1.1 Including graphics in LaTeX 192
10.1.2 Including graphics in Markdown/HTML 194
10.1.3 Non-knitted graphics with knitr/rmarkdown 195

10.2 Basic knitr/rmarkdown Figure Options 196
10.2.1 Chunk options . 196
10.2.2 Global options . 197

10.3 Knitting R’s Default Graphics 198
10.4 Including ggplot2 Graphics 202

10.4.1 Showing regression results with caterpillar plots 205
10.5 JavaScript Graphs with googleVis 208

10.5.1 Basic googleVis figures 209
10.5.2 Including googleVis in knitted documents 210
10.5.3 JavaScript Graphs with htmlwidgets-based packages . 211

IV Presentation Documents 213

11 Presenting with LaTeX 215
11.1 The Basics . 216

Contents vii

11.1.1 Getting started with LaTeX editors 216
11.1.2 Basic LaTeX command syntax 217
11.1.3 The LaTeX preamble and body 217
11.1.4 Headings . 222
11.1.5 Paragraphs and spacing 222
11.1.6 Horizontal lines . 222
11.1.7 Text formatting . 223
11.1.8 Math . 224
11.1.9 Lists . 225
11.1.10 Footnotes . 226
11.1.11 Cross-references . 226

11.2 Bibliographies with BibTeX 226
11.2.1 The .bib file . 227
11.2.2 Including citations in LaTeX documents 228
11.2.3 Generating a BibTeX file of R package citations . . . 228

11.3 Presentations with LaTeX Beamer 231
11.3.1 Beamer basics . 231
11.3.2 knitr with LaTeX slideshows 234

12 Presenting in a Variety of Formats with R Markdown 237
12.1 The Basics . 237

12.1.1 Getting started with Markdown editors 238
12.1.2 Preamble and document structure 239
12.1.3 Headings . 240
12.1.4 Horizontal lines . 240
12.1.5 Paragraphs and new lines 240
12.1.6 Italics and bold . 241
12.1.7 Links . 241
12.1.8 Lists . 241
12.1.9 Math with MathJax 242

12.2 Further Customizability with rmarkdown 243
12.2.1 CSS style files and Markdown 247

12.3 Slideshows with Markdown, R Markdown, and HTML 248
12.3.1 HTML slideshows with rmarkdown 249
12.3.2 LaTeX Beamer slideshows with rmarkdown 250
12.3.3 Slideshows with Markdown and RStudio’s R Presenta-

tions . 251
12.4 Publishing HTML Documents Created with R Markdown . . 254

12.4.1 Further information on R Markdown 256

13 Conclusion 257
13.1 Citing Reproducible Research 258
13.2 Licensing Your Reproducible Research 259
13.3 Sharing Your Code in Packages 259
13.4 Project Development: Public or Private? 260

viii Contents

13.5 Is it Possible to Completely Future-Proof Your Research? . . 261

Bibliography 263

Index 271

Preface

Motivation

This book has its genesis in my PhD research at the London School of Eco-
nomics. I started the degree with questions about the 2008/09 financial crisis
and planned to spend most of my time researching capital adequacy require-
ments. But I quickly realized that I would actually spend a large proportion of
my time learning the day-to-day tasks of data gathering, analysis, and results
presentation. After plodding through for a while with Word, Excel, and Stata,
my breaking point came while reentering results into a regression table after I
had tweaked one of my statistical models, yet again. Surely there was a better
way to do research that would allow me to spend more time answering my re-
search questions. Making research reproducible for others also means making
it better organized and efficient for yourself. My search for a better way led
me straight to the tools for reproducible computational research.

The reproducible research community is very active, knowledgeable, and help-
ful. Nonetheless, I often encountered holes in this collective knowledge, or at
least had no resource organizing it all together as a whole. That is my inten-
tion for this book: to bring together the skills I have picked up for actually
doing and presenting computational research. Hopefully, the book, along with
making reproducible research more widely used, will save researchers hours of
googling, so they can spend more time addressing their research questions.

Changes to the Third Edition

• Spring cleaning: updated package recommendations, examples, and URLs.
Removed technologies no longer in regular use.

• More advanced R Markdown and less LaTeX in discussions of markup
languages and examples.

• Stronger focus on reproducible working directory tools.

ix

x Preface

• Updated discussion of cloud storage services and persistently citing repro-
ducible material.

• Added discussion of Jupyter notebooks and reproducible practices in in-
dustry.

• Examples of data manipulation with Tidyverse tibbles (in addition to
standard data frames) and pivot_longer() and pivot_wider() functions
for pivoting data.

• Naming conventions are in current R-Tidyverse best practice.

A detailed list of changes for the third edition is available at
https://github.com/christophergandrud/Rep-Res-Book/issues/57
#issuecomment-421739971.

Changes to the Second Edition

The tools of reproducible research have developed rapidly since the first edition
of this book was published just two years ago. The second edition has been
updated to incorporate the most important of these advancements, including
discussions of:

• The rmarkdown package, which allows you to create reproducible research
documents in PDF, HTML, and Microsoft Word formats using the simple
and intuitive Markdown syntax.

• Improvements and changes to RStudio’s interface and capabilities, such
as its new tools for handling R Markdown documents.

• Expanded knitr R code chunk capabilities.

• The kable() function in the knitr package and the texreg package for
dynamically creating tables to present your data and statistical results.

• An improved discussion of file organization allowing you to take full ad-
vantage of relative file paths so that your documents are more easily re-
producible across computers and systems.

• The dplyr, magrittr, and tidyr packages for fast data manipulation.

• Numerous changes to R syntax in user-created packages.

• Changes to GitHub’s and Dropbox’s interfaces.

https://github.com/christophergandrud/Rep-Res-Book/issues/57#issuecomment-421739971
https://github.com/christophergandrud/Rep-Res-Book/issues/57#issuecomment-421739971

Preface xi

Acknowledgments

I would not have been able to write this book without many people’s advice
and support. Foremost is John Kimmel, acquisitions editor at Chapman &
Hall. He approached me in Spring 2012 with the general idea and opportunity
for this book. Other editors at Chapman & Hall and Taylor & Francis have
greatly contributed to this project, including Marcus Fontaine. I would also
like to thank all of the book’s reviewers whose helpful comments have greatly
improved it. The first edition’s reviewers include:

• Jeromy Anglim, Deakin University
• Karl Broman, University of Wisconsin, Madison
• Jake Bowers, University of Illinois, Urbana-Champaign
• Corey Chivers, McGill University
• Mark M. Fredrickson, University of Illinois, Urbana-Champaign
• Benjamin Lauderdale, London School of Economics
• Ramnath Vaidyanathan, McGill University

Many other anonymous reviewers also gave great feedback over the years.

The developer and blogging community has also been incredibly important
for making this book possible. Foremost among these people is Yihui Xie. He
is the main developer behind the knitr package, co-developer of rmarkdown,
and also an avid blog writer and commenter. Without him, the ability to do
reproducible research would be much harder and the blogging community that
spreads knowledge about how to do these things would be poorer. Other great
contributors to the reproducible research community include Carl Boettiger,
Karl Broman, Markus Gesmann (who developed googleVis), Rob Hyndman,
and Hadley Wickham (who has developed numerous very useful R packages).
Thank you also to Victoria Stodden and Michael Malecki for helpful sugges-
tions. And, of course, thank you to everyone at RStudio (especially JJ Allaire)
for creating an increasingly useful program for reproducible research.

The second edition has benefited immensely from first edition readers’ com-
ments and suggestions. For a list of their valuable contributions, please see
the book’s GitHub Issues page https://github.com/christophergandrud/
Rep-Res-Book/issues and the first edition’s Errata page http://christop
hergandrud.github.io/RepResR-RStudio/errata.htm.

My students at Yonsei University were an important part of making the first
edition. One of the reasons that I got interested in using many of the tools
covered in this book, like using knitr in slideshows, was to improve a course I
taught there: Introduction to Social Science Data Analysis. I tested many of
the explanations and examples in this book on my students. Their feedback
has been very helpful for making the book clearer and more useful. Their

https://github.com/christophergandrud/Rep-Res-Book/issues
https://github.com/christophergandrud/Rep-Res-Book/issues
http://christophergandrud.github.io/RepResR-RStudio/errata.htm
http://christophergandrud.github.io/RepResR-RStudio/errata.htm

xii Preface

experience with using these tools on Microsoft Windows computers was also
important for improving the book’s Windows documentation. Similarly, my
students at the Hertie School of Governance inspired and tested key sections
of the second edition.

The vibrant community at Stack Overflow http://stackoverflow.com/ and
Stack Exchange http://stackexchange.com/ are always very helpful for find-
ing answers to problems that plague any computational researcher. Impor-
tantly, the sites make it easy for others to find the answers to questions that
have already been asked.

The library at the University of California, San Francisco was a great home
for writing the third edition.

Kristina Gandrud has been immensely supportive and patient with me
throughout the writing of this book (and my entire career).

http://stackoverflow.com/
http://stackexchange.com/

About the Author

Christopher Gandrud is Head of Economics and Experimentation at Za-
lando SE. He leads teams of social data scientists and software engineers
building and evaluating large-scale automated decision-making systems. He
was previously a research fellow at the Institute for Quantitative Social Sci-
ence, Harvard University developing statistical software for the social and
physical sciences. He has held posts at City, University of London, the Hertie
School of Governance, Yonsei University, and the London School of Economics
where in 2012 he completed a PhD in quantitative political science.

xiii

Stylistic Conventions

I use the following conventions throughout the book:

• Abstract variables: Abstract variables, i.e. variables that do not refer-
ence specific objects, are in ALL CAPS TYPEWRITER TEXT.

• Clickable buttons: Clickable buttons are in typewriter text.

• Code: All code is in typewriter text.

• File names and directories: File names and directories more generally
are printed in italics. Words are separated by em dashes—kebab-case.1

• File extensions: Like file names, file extensions are italicized.

• Individual variable values: Individual variable values mentioned in the
text are in italics.

• Objects: Objects are printed in italics. I use underscores (_) to separate
words in object names.

• Object columns: Data frame object columns are printed in bold.

• R Function names: are followed by parentheses (e.g., stats::lm())

• Packages: R packages are printed in italics. When a system, rather than
the package that shares its name is referred to, it is not italicized, e.g. R
Markdown (system) vs. rmarkdown (package).2

• Windows and RStudio panes: Open windows and RStudio panes are
written in italics.

• Variable names: Variable names are printed in bold. Underscores (_)
separate words in variable names.

1See https://stackoverflow.com/a/17820138. Posted 23 July 2013.
2See Yihui Xie’s comment at: https://andrewgelman.com/2016/01/14/rstanarm-and-

more/#comment-259425. Posted 14 January 2016.

xv

https://stackoverflow.com/a/17820138
https://andrewgelman.com/2016/01/14/rstanarm-and-more/#comment-259425
https://andrewgelman.com/2016/01/14/rstanarm-and-more/#comment-259425

Additional Resources

You can freely download additional resources supplementing examples in this
book. These resources include longer examples discussed in individual chapters
and a complete short reproducible research project.

Chapter Examples

Longer examples discussed in individual chapters, including files to dynami-
cally download data, code for creating figures, and markup files for creating
presentation documents, can be accessed at: https://github.com/christo
phergandrud/rep-res-book-v3-examples. Please see Chapter 5 for more in-
formation on downloading files from GitHub, where the examples are stored.

Short Example Project

To download a full (though very short) example of a reproducible research
project created using the tools covered in this book, go to: https://github
.com/christophergandrud/rep-res-book-v3-examples. Please follow the
replication instructions in the main README.md. It is a good idea to hold
off looking at this complete example in detail until after you have become
acquainted with the individual tools it uses. Become acquainted with the tools
by reading through this book and working with the chapter examples.

The following two figures give you a sense of how the example’s files are orga-
nized. Figure 1 shows how the files are organized in the file system. Figure 2
illustrates how the main files are dynamically tied together. In the data direc-
tory, we have files to gather raw data from the World Bank (2018) on fertilizer
consumption and from Pemstein et al. (2010) on countries’ levels of democracy.
They are tied to the data through the WDI() and download.file() functions.
A Makefile can run gather-1 and gather-2.R to gather and clean the data. It

xvii

https://github.com/christophergandrud/rep-res-book-v3-examples
https://github.com/christophergandrud/rep-res-book-v3-examples
https://github.com/christophergandrud/rep-res-book-v3-examples
https://github.com/christophergandrud/rep-res-book-v3-examples

xviii Additional Resources

runs merge-data.R to merge the data into one data file called main-data.csv.
It also automatically generates a variable description file and a README.md
recording the session info.

The analysis folder contains two files that create figures presenting this data.
They are tied to main-data.csv with the import() function. These files are
run by the presentation documents when they are knitted. The presentation
documents tie to the analysis documents with knitr and the source() func-
tion.

Though a simple example, hopefully these files will give you a complete sense
of how a reproducible research project can be organized. Please feel free to
experiment with different ways of organizing the files and tying them together
to make your research really reproducible.

root

rep-res-book-v3-examples

paper.Rmd

slideshow.Rmd

website.Rmd

main.bib

data

main-data.csv

Makefile

merge-data.R

gather-1

gather-2.R

main-data-variable-descriptions.md

README.Rmd

analysis

googlevis-map.R

scatter-uds-fert.R

README.md

rep-res-book-v3-examples.Rproj

FIGURE 1: Short Example Project File Tree

Additional Resources xix

Raw WDI Data

gather-1

Raw UDS Data

gather-2.R

Makefile
merge-data.R

main-data.csv

scatter-uds-fert.R

googlevis-map.R

article.Rmd

slideshow.Rmd

website.Rmd

article.pdf

slideshow.pdf

website.html

download.file()

Make

merge()

WDI()

import()
knitr
source()

FIGURE 2: Short Example Main File Ties

Updates

Many of the reproducible research tools discussed in this book are improving
rapidly. Because of this, I will regularly post updates to the content covered
in the book at: https://github.com/christophergandrud/Rep-Res-Book.

Corrections

If you notice any corrections that should be made to fix typos, broken URLs,
and so on, you can report them at: https://github.com/christophergand
rud/Rep-Res-Book/issues. I’ll post notifications of changes to an Errata
page at: http://christophergandrud.github.io/RepResR-RStudio/erra
ta.htm.

https://github.com/christophergandrud/Rep-Res-Book
https://github.com/christophergandrud/Rep-Res-Book/issues
https://github.com/christophergandrud/Rep-Res-Book/issues
http://christophergandrud.github.io/RepResR-RStudio/errata.htm
http://christophergandrud.github.io/RepResR-RStudio/errata.htm

Part I

Getting Started

1
Introducing Reproducible Research

Research is typically presented in very selective containers: slideshows, jour-
nal articles, books, or websites. These presentation documents announce a
project’s findings and try to convince us that the results are correct (Mesirov,
2010). It’s important to remember that these documents are not the research.
Especially in the computational and statistical sciences, these documents are
the “advertising”. The research is the “full software environment, code, and
data that produced the results” (Buckheit and Donoho, 1995; Donoho, 2010,
385). When we separate the research from its advertisement, we are making
it difficult for others to verify the findings by reproducing them.

This book gives you the tools to dynamically combine your research with the
presentation of your findings. The first tool is a workflow for reproducible
research that weaves the principles of reproducibility throughout your entire
research project, from data gathering to the statistical analysis, and the pre-
sentation of results. You will also learn how to use a number of computer tools
that make this workflow easier and more robust. These tools include:

• the R statistical language that will allow you to gather data and analyze
it;

• the LaTeX and Markdown markup languages that you can use to create
documents–slideshows, articles, books, and webpages–for presenting your
findings;

• the knitr and rmarkdown packages for R and other tools, including
command-line programs like GNU Make and Git version control, for
dynamically tying your data gathering, analysis, and presentation docu-
ments together so that they can be easily reproduced;

• RStudio, a program that brings all of these tools together.

3

4 1 Introducing Reproducible Research

1.1 What Is Reproducible Research?

Though there is some debate over the necessary and sufficient conditions for
a full replication (Makel and Plucker, 2014, 2), research results are generally
considered1 replicable if there is sufficient information available for indepen-
dent researchers to make the same findings using the same procedures with
new data.2 For research that relies on experiments, this can mean a researcher
not involved in the original research being able to rerun the experiment, in-
cluding sampling, and validate that the new results are comparable to the
original results. In computational and quantitative empirical sciences, results
are replicable if independent researchers can recreate findings by following the
procedures originally used to gather the data and run the computer code. Of
course, it is sometimes difficult to replicate the original data set because of is-
sues such as limited resources to gather new data or because the original study
already sampled the full universe of cases. So as a next-best standard, we can
aim for “really reproducible research” (Peng, 2011, 1226).3 In computational
sciences4 this means:

the data and code used to make a finding are available and
they are sufficient for an independent researcher to recreate the
finding.

In practice, research needs to be easy for independent researchers to reproduce
(Ball and Medeiros, 2011). If a study is difficult to reproduce, it’s more likely
that no one will reproduce it. If someone does attempt to reproduce this
research, it will be difficult for them to tell if any errors they find were in the

1Rokem et al. (2018, 3-4) note that some disciplines, e.g. computing machinery and
meteorology, give “replicable” and “reproducible” the exact opposite meanings from the
way they are used in this book and many other disciplines such as biology, economics, and
epidemiology.

2This is close to what Lykken (1968) calls “operational replication”.
3The really reproducible computational research originates in the 1980s and early 1990s

with Jon Claerbout and the Stanford Exploration Project (Fomel and Claerbout, 2009;
Donoho et al., 2009). Further seminal advances were made by Jonathan B. Buckheit and
David L. Donoho who created the Wavelab library of MATLAB routines for their research
on wavelets in the mid-1990s (Buckheit and Donoho, 1995).

4Reproducibility is important for both quantitative and qualitative research (King et al.,
1994). Nonetheless, we will focus mainly on on methods for reproducibility in quantitative
computational research.

1.2 Why Should Research Be Reproducible? 5

original research or problems they introduced during the reproduction. In this
book, you will learn how to avoid these problems.

In particular, you will learn tools for dynamically “knitting”5 the data and
the source code together with your presentation documents. Combined with
well-organized source files and clearly and completely commented code, inde-
pendent researchers will be able to understand how you obtained your results.
This will make your computational research easily reproducible.

1.2 Why Should Research Be Reproducible?

Reproducible research is one of the main components of science. If that’s not
enough reason for you to make your research reproducible, consider that the
tools of reproducible research also have direct benefits for you as a researcher.

1.2.1 For science

Replicability has been a key part of scientific inquiry from perhaps the 1200s
(Bacon, 1859; Nosek et al., 2012). It has even been called the “demarcation
between science and non-science” (Braude, 1979, 2). Why is replication so
important for scientific inquiry?

Standard to judge scientific claims

Replication opens claims to scrutiny, allowing us to keep what works and dis-
card what doesn’t. Science, according to the American Physical Society, “is
the systematic enterprise of gathering knowledge . . . organizing and condens-
ing that knowledge into testable laws and theories”. The “ultimate standard”
for evaluating scientific claims is whether or not the claims can be replicated
(Peng, 2011; Kelly, 2006). Research findings cannot even really be considered
“genuine contributions to human knowledge” until they have been verified
through replication (Stodden, 2009b, 38). Replication “requires the complete
and open exchange of data, procedures, and materials”. Scientific conclusions

5Much of the reproducible computational research and literate programming literatures
have traditionally used the term “weave” to describe the process of combining source code
and presentation documents (see Knuth, 1992, 101). In the R community, the term “weave”
is usually used to describe the combination of source code and LaTeX documents. The term
“knit” reflects the vocabulary of the knitr R package (knit + R). It is used more generally
to describe weaving with a variety of markup languages. The term is used by RStudio if you
are using the rmarkdown package, which is similar to knitr. We also cover the rmarkdown
package in this book. Because of this, I use the term knit rather than weave in this book.

6 1 Introducing Reproducible Research

that are not replicable should be abandoned or modified “when confronted
with more complete or reliable . . . evidence”.6

Reproducibility enhances replicability. If other researchers are able to clearly
understand how a finding was originally made, then they will be better able to
conduct comparable research in meaningful attempts to replicate the original
findings. Sometimes strict replicability is not feasible, for example, when it is
only possible to gather one data set on a population of interest. In these cases
reproducibility is a “minimum standard” for judging scientific claims (Peng,
2011).

It is important to note that though reproducibility is a minimum standard
for judging scientific claims, “a study can be reproducible and still be wrong”
(Peng, 2014). For example, a statistically significant finding in one study may
remain statistically significant when reproduced using the original data/code,
but when researchers try to replicate it using new data and even methods,
they are unable to find a similar result. The original finding could have been
noise, even though it is fully reproducible.

Avoiding effort duplication and encouraging cumulative knowledge
development

Not only is reproducibility important for evaluating scientific claims, it can
also contribute to the cumulative growth of scientific knowledge (Kelly, 2006;
King, 1995). Reproducible research cuts down on the amount of time scientists
have to spend gathering data or developing procedures that have already been
collected or figured out. Because researchers do not have to discover on their
own things that have already been done, they can more quickly build on
established findings and develop new knowledge.

1.2.2 For you

Working to make your research reproducible does require extra upfront effort.
For example, you need to put effort into learning the tools of reproducible
research by doing things such as reading this book. But beyond the clear ben-
efits for science, why should you make this effort? Using reproducible research
tools can make your research process more effective and (hopefully) ultimately
easier.

6See the American Physical Society’s website at http://www.aps.org/policy/stateme
nts/99_6.cfm. See also Fomel and Claerbout (2009).

http://www.aps.org/policy/statements/99_6.cfm
http://www.aps.org/policy/statements/99_6.cfm

1.2 Why Should Research Be Reproducible? 7

Better work habits

Making a project reproducible from the start encourages you to use better
work habits. It can spur you to more effectively plan and organize your re-
search. It should push you to bring your data and source code up to a higher
level of quality than you might if you “thought ‘no one was looking’ ” (Donoho,
2010, 386). This forces you to root out errors–a ubiquitous part of compu-
tational research–earlier in the research process (Donoho, 2010, 385). Clear
documentation also makes it easier to find errors.7

Reproducible research needs to be stored so that other researchers can actu-
ally access the data and source code. By taking steps to make your research
accessible for others, you are also making it easier for yourself to find your
data and methods when you revise your work or begin a new project. You
are avoiding personal effort duplication, allowing you to cumulatively build
on your own work more effectively.

Better teamwork

The steps you take to make sure an independent researcher can figure out
what you have done also make it easier for your collaborators to understand
your work and build on it. This applies not only to current collaborators, but
also to future collaborators. Bringing new members of a research team up to
speed on a cumulatively growing research project is faster if they can easily
understand what has been done already (Donoho, 2010, 386).

Changes are easier

A third person may or may not actually reproduce your research even if you
make it easy for them to do so. But, you will almost certainly reproduce parts or
even all of your own research. No actual research process is completely linear.
You almost never gather data, run analyses, and present your results without
going backwards to add variables, make changes to your statistical models,
create new graphs, alter results tables in light of new findings, and so on. You
will probably try to make these changes long after you last worked on the
project and long since you remembered the details of how you did it. Whether
your changes are because of journal reviewers’ and conference participants’
comments or you discover that new and better data has been made available
since beginning the project, designing your research to be reproducible from
the start makes it much easier to change things later on.

Dynamic reproducible documents make changes much easier. Changes made

7Of course, it’s important to keep in mind that reproducibility is “neither necessary nor
sufficient to prevent mistakes” (Stodden, 2009a).

8 1 Introducing Reproducible Research

to one part of a research project have a way of cascading through the other
parts. For example, adding a new variable to a largely completed analysis
requires gathering new data and merging it with existing data sets. If you
used data imputation or matching methods, you may need to rerun these
models. You then have to update your main statistical analyses, and recreate
the tables and graphs you used to present the results. Adding a new variable
essentially forces you to reproduce large portions of your research. If when you
started the project you used tools that make it easier for others to reproduce
your research, you also made it easier to reproduce the work yourself. You will
have taken steps to have a “better relationship with your future self” (Bowers,
2011, 2).

Higher research impact

Reproducible research is more likely to be useful for other researchers than non-
reproducible research. Useful research is cited more frequently (Donoho, 2002;
Piwowar et al., 2007; Vandewalle, 2012). Research that is fully reproducible
contains more information, i.e. more reasons to use and cite it, than presen-
tation documents merely showing findings. Independent researchers may use
the reproducible data or code to look at other, often unanticipated, questions.
When they use your work for a new purpose they will (should) cite your work.
Because of this, Vandewalle et al. even argue that “the goal of reproducible
research is to have more impact with our research” (2007, 1253).

A reason researchers often avoid making their research fully reproducible is
that they are afraid other people will use their data and code to compete with
them. I’ll let Donoho et al. address this one:

True. But competition means that strangers will read your papers,
try to learn from them, cite them, and try to do even better. If
you prefer obscurity, why are you publishing? (2009, 16)

1.3 Who Should Read This Book?

This book is intended primarily for researchers who want to use a systematic
workflow that encourages reproducibility as well as practical state-of-the-art

1.3 Who Should Read This Book? 9

computational tools to put this workflow into practice. These people include
professional researchers, upper-level undergraduate, and graduate students
working on computational data-driven projects. Hopefully, editors at academic
publishers will also find the book useful for improving their ability to evaluate
and edit reproducible research.

The more researchers that use the tools of reproducibility, the better. So I
include enough information in the book for people who have very limited
experience with these tools, including limited experience with R, LaTeX, and
Markdown. They will be able to start incorporating reproducible research
tools into their workflow right away. The book will also be helpful for people
who already have general experience using technologies such as R and LaTeX,
but would like to know how to tie them together for reproducible research.

1.3.1 Academic researchers

Hopefully so far in this chapter I’ve convinced you that reproducible research
has benefits for you as a member of the scientific community and personally
as a computational researcher. This book is intended to be a practical guide
for how to actually make your research reproducible. Even if you already use
tools such as R and LaTeX, you may not be getting their full potential. This
book will teach you useful ways to get the most out of them as part of a
reproducible research workflow.

1.3.2 Students

Upper-level undergraduate and graduate students conducting original compu-
tational research should make their research reproducible for the same reasons
that professional researchers should. Forcing yourself to clearly document the
steps you took will also encourage you to think more clearly about what you
are doing and reinforce what you are learning. It will hopefully give you a
greater appreciation of research accountability and integrity early in your ca-
reer (Barr, 2012; Ball and Medeiros, 2011, 183).

Even if you don’t have extensive experience with computer languages, this
book will teach you specific habits and tools that you can use throughout your
student research and hopefully your careers. Learning these things earlier will
save you considerable time and effort later.

1.3.3 Instructors

When instructors incorporate the tools of reproducible research into their
assignments, they not only build students’ understanding of research best

10 1 Introducing Reproducible Research

practice, but are also better able to evaluate and provide meaningful feedback
on students’ work (Ball and Medeiros, 2011, 183). This book provides a
resource that you can use with students to put reproducibility into practice.

If you are teaching computational courses, you may also benefit from making
your lecture material dynamically reproducible. Your slides will be easier to
update for the same reasons that it is easier to update research. Making the
methods you used to create the material available to students will give them
more information. Clearly documenting how you created lecture material can
also pass information on to future instructors.

1.3.4 Editors

When the first edition of this book was published, there was a worrying lack
of reproduciblity in published research. The infrastructure was weak (Peng,
2011) and many journals did not require it. However, the situation has largely
changed for the better: many journals require all analyses to be in some sense
reproducible. The journal Biostatistics is a good example of a publication
that is encouraging (actually requiring) reproducible research. From 2009 the
journal has had an editor for reproducibility that ensures replication files are
available and that results can be replicated using these files (Peng, 2009). The
more editors there are with the skills to work with reproducible research, the
more likely it is that researchers will do it.

We need to maintain and continuously improve these standards. This book is
useful for editors at academic publishers who want to be better at evaluating
reproducible research, editing it, and developing systems to make it more
widely available.

1.3.5 Private sector researchers

Researchers in the private sector may or may not want to make their work
easily reproducible outside of their organization. Data compliance legislation,
such as the European Union’s General Data Protection Regulation (GDPR),
may even make it legally problematic to share data even within a company
in order to protect personal information. However, that does not mean that
significant benefits cannot be gained from using the methods of reproducible
research, even if only in part.

Even if a company has only one person doing research, it benefits from using
reproducible research methods. Just as with academic research, this person
actually does have a collaborator: their future self. As discussed above, repro-
ducible research makes this collaboration easier.

Companies with more than one researcher do (or likely should) act as a re-

1.4 The Tools of Reproducible Research 11

search community, even if public reproducibility is ruled out to guard propri-
etary information.8 Making as much of your research reproducible (e.g. your
source code, but not the raw data if it contains personal information) to mem-
bers of your organization can spread valuable information about how analyses
were done and data was collected. This will help build your organization’s
knowledge and avoid effort duplication. Just as a lack of reproducibility hin-
ders the spread of information in the scientific community, it can hinder it in-
side of a private organization. Using the sort of dynamic automated processes
run with clearly documented source code we will learn in this book can also
help create robust data analysis methods that help your organization avoid
errors that may come from cutting-and-pasting data across spreadsheets.9

1.4 The Tools of Reproducible Research

This book will teach you the tools you need to make your research highly
reproducible. Reproducible research involves two broad sets of tools. The first
is a reproducible research environment that includes the statistical tools
you need to run your analyses as well as “the ability to automatically track
the provenance of data, analyses, and results and to package them (or pointers
to persistent versions of them) for redistribution”. The second set of tools is a
reproducible research publisher, which prepares dynamic documents for
presenting results and is easily linked to the reproducible research environment
(Mesirov, 2010, 415).

In this book, we will focus on learning how to use the widely available and
highly flexible reproducible research environment–R/RStudio (R Core Team,
2019; RStudio, Inc., 2019).10 R/RStudio can be linked to numerous repro-
ducible research publishers such as LaTeX and Markdown with Yihui Xie’s
knitr package (2020b) or the related rmarkdown package (Allaire et al., 2019b).
The main tools covered in this book include:

• R: a programming language primarily for statistics and graphics. It can
also be useful for data gathering and creating presentation documents.

• knitr and rmarkdown: related R packages for literate programming.
They allow you to combine your statistical analysis and the presentation

8There are ways to enable some public reproducibility without revealing confidential
information. See (Vandewalle et al., 2007) for a discussion of one approach.

9See this post by David Smith about how the J.P. Morgan “London Whale”
problem may have been prevented with the type of processes covered in this book:
http://blog.revolutionanalytics.com/2013/02/did-an-excel-error-bring-down-the-
london-whale.html (posted 11 February 2013).

10The book was created with R version 3.6.2 and RStudio preview release version 1.2.5019.

http://blog.revolutionanalytics.com/2013/02/did-an-excel-error-bring-down-the-london-whale.html
http://blog.revolutionanalytics.com/2013/02/did-an-excel-error-bring-down-the-london-whale.html

12 1 Introducing Reproducible Research

of the results into one document. They work with R and a number of other
languages such as Bash, Python, and Ruby.

• Markup languages: instructions for how to format a presentation docu-
ment. In this book, we cover LaTeX, Markdown, and a little HTML.

• RStudio: an integrated developer environment (IDE) for R that tightly
combines R, knitr, rmarkdown, and markup languages.

• Cloud storage and versioning: Git/GitHub that can store data, code,
and presentation files, save previous versions of these files, and make this
information widely available.

• Unix-like shell programs: These tools are useful for working with large
research projects.11 They also allow us to use command-line tools includ-
ing GNU Make for compiling projects and Pandoc, a program useful for
converting documents from one markup language to another.

1.4.1 Why Use R, knitr/R Markdown, and RStudio for Re-
producible Research?

Why use R?

Why use a statistical programming language like R for reproducible research?
R has a very active development community that is constantly expanding
what it is capable of. As we will see in this book, R enables researchers across
a wide range of disciplines to gather data and run statistical analyses. Using
the knitr or rmarkdown package, you can connect your R-based analyses to
presentation documents created with markup languages such as LaTeX and
Markdown. This allows you to dynamically and reproducibly present results
in articles, slideshows, and webpages.

The way you interact with R has benefits for reproducible research. In general
you interact with R (or any other programming and markup language) by ex-
plicitly writing down your steps as source code. This promotes reproducibility
more than your typical interactions with Graphical User Interface (GUI) pro-
grams like SPSS12 and Microsoft Word. When you write R code and embed
it in presentation documents created using markup languages, you are forced
to explicitly state the steps you took to do your research. When you do re-
search by clicking through drop-down menus in GUI programs, your steps are
lost, or at least documenting them requires considerable extra effort. Also it
is generally more difficult to dynamically embed your analysis in presentation

11In this book, I cover the Bash shell for Linux and Mac as well as Windows PowerShell.
12I know you can write scripts in statistical programs like SPSS, but doing so is not

encouraged by the program’s interface and you often have to learn multiple languages for
writing scripts that run analyses, create graphics, and deal with matrices.

1.4 The Tools of Reproducible Research 13

documents created by GUI word processing programs in a way that will be
accessible to other researchers both now and in the future. I’ll come back to
these points in Chapter 2.

Why use knitr and R Markdown?

Literate programming is a crucial part of reproducible quantitative research.13

Being able to directly link your analyses, your results, and the code you used
to produce the results makes tracing your steps much easier. There are many
different literate programming tools for a number of different programming
languages.14 Previously, one of the most common tools for researchers using R
and the LaTeX markup language was Sweave (Leisch, 2002). The packages I
am going to focus on in this book are newer and have more capabilities. They
are called knitr and rmarkdown. Why are we going to use these tools in this
book and not Sweave or some other tool?

The simple answer is that they are more capable than Sweave. Both knitr
and rmarkdown can work with markup languages other than LaTeX includ-
ing Markdown and HTML. rmarkdown can even output Microsoft Word doc-
uments. They can work with programming languages other than R. They
highlight R code in presentation documents making it easier for your readers
to follow.15 They give you better control over the inclusion of graphics and
can cache code chunks, i.e. save the output for later. knitr has the ability
to understand Sweave-like syntax, so it will be easy to convert backwards to
Sweave if you want to.16 You also have the choice to use much simpler and
more straightforward syntax with knitr and rmarkdown.

knitr and rmarkdown have broadly similar capabilities and syntax. They both
are literate programming tools that can produce presentation documents from
multiple markup languages. They have almost identical syntax when used in
Markdown. Their main difference is that they take different approaches to
creating presentation documents. knitr documents must be written using the
markup language associated with the desired output. For example, with knitr,
LaTeX must be used to create PDF output documents and Markdown or
HTML must be used to create webpages. R Markdown builds directly on knitr,

13Donald Knuth coined the term literate programming in the 1970s to refer to a source file
that could be both run by a computer and “woven” with a formatted presentation document
(Knuth, 1992).

14A very interesting tool that is worth taking a look at for the Python programming
language is HTML Notebooks created with Jupyter. For more details see http://jupyter.
org/. We will also discuss these at the end of Chapter 3.

15Syntax highlighting uses different colors and fonts to distinguish different types of text.
16Note that the Sweave-style syntax is not identical to actual Sweave syntax. See Yihui

Xie’s discussion of the differences between the two at: http://yihui.name/knitr/demo/sw
eave/. knitr has a function (Sweave2knitr) for converting Sweave to knitr syntax.

http://jupyter.org/
http://jupyter.org/
http://yihui.name/knitr/demo/sweave/
http://yihui.name/knitr/demo/sweave/

14 1 Introducing Reproducible Research

the key difference being that it uses the straightforward Markdown markup
language to generate PDF, HTML, and MS Word documents.17

Because you write with the simple Markdown syntax, R Markdown is generally
easier to use. It has the advantage of being able to take the same markup
document and output multiple types of presentation documents. Nonetheless,
for complex documents like books and long articles or work that requires
custom formatting, knitr LaTeX is often preferable and extremely flexible,
though the syntax is more complicated.

Why use RStudio?

Why use the RStudio integrated development environment for reproducible
research? R by itself has the capabilities necessary to gather data, analyze it,
and, with a little help from knitr/R Markdown and markup languages, present
results in a way that is highly reproducible. RStudio allows you to do all of
these things, but simplifies many of them and allows you to navigate through
them more easily. It also is a happy medium between R’s text-based interface
and a pure GUI.

Not only does RStudio do many of the things that R can do but more easily,
it is also a very good standalone editor for writing documents with LaTeX
and Markdown. For LaTeX documents it can, for example, insert frequently
used commands like \section{} for numbered sections (see Chapter 11).18

There are many LaTeX editors available, both open source and paid. But
RStudio is currently the best program for creating reproducible LaTeX and
Markdown documents. It has full syntax highlighting. Its syntax highlighting
can even distinguish between R code and markup commands in the same
document. It can spell check LaTeX and Markdown documents. It handles
knitr/R Markdown code chunks beautifully (see Chapter 3).

Finally, RStudio not only has tight integration with various markup languages,
it also has capabilities for using other tools such as C++, CSS, JavaScript,
Python, and a few other programming languages. It is closely integrated with
the version control programs Git and SVN. Both of these programs allow
you to keep track of the changes you make to your documents (see Chapter 5).
This is important for reproducible research since version control programs can
document many of your research steps. It also has a built-in ability to make
HTML slideshows from knitr/R Markdown documents. Basically, RStudio

17It does this by relying on a tool called Pandoc (MacFarlane, 2019).
18If you are more comfortable with a what-you-see-is-what-you-get (WYSIWYG) word

processor like Microsoft Word, you might be interested in exploring Lyx. It is a WYSIWYG-
like LaTeX editor that works with knitr. It doesn’t work with the other markup languages
covered in this book. For more information, see: https://www.lyx.org/. I give some brief
information on using Lyx with knitr in Chapter 3’s Appendix.

https://www.lyx.org/

1.5 Installing the main software 15

makes it easy to create and navigate through complex reproducible research
documents.

1.5 Installing the main software

Before you read this book you should install the main software. All of the
software programs covered in this book are open source and can be easily
downloaded for free. They are available for Windows, Mac, and Linux operat-
ing systems. They should run well on most modern computers.

You should install R before installing RStudio. You can download the pro-
grams from the following websites:

• R: https://www.r-project.org/,

• RStudio Desktop (Open Source License): https://www.rstudio.
com/products/rstudio/download/.

The webpages for downloading these programs have comprehensive informa-
tion on how to install them. Please refer to those pages for more information.

After installing R and RStudio, you will probably also want to install a number
of user-written packages that are covered in this book. To install all of these
user-written packages, please see this chapter’s Appendix.

1.5.1 Installing markup languages

You will need to install the R package rmarkdown (Allaire et al., 2019b) to
turn your markdown documents into polished output that can be presented
(e.g. as a website or PDF). To do this in R, use:

install.packages("rmarkdown")

If you plan to render your R Markdown documents from the console without
RStudio, you will need to install Pandoc. For instructions, see Pandoc’s down-
load page: https://pandoc.org/installing.html. If you use RStudio, this
step is unnecessary as Pandoc will be installed automatically.

If you want to create LaTeX (PDF) documents, you can install a TeX distri-

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
https://pandoc.org/installing.html

16 1 Introducing Reproducible Research

bution.19 The simplest way to get all of the LaTeX capabilities you will need
for this book is to use the tinytex (Xie, 2020c) R package:

install.packages('tinytex')
tinytex::install_tinytex()

If you want a full LaTeX distribution, see https://www.latex-project.or
g/get/ for installation information.

1.5.2 GNU Make

If you are using a Linux computer, you already have GNU Make installed.20

Mac users will need to install the command-line developer tools. There are two
ways to do this. One is go to the App Store and download Xcode (it’s free).
Once Xcode is installed, install command-line tools, which you will find by
opening Xcode then clicking on Preference Downloads. However, Xcode is a
very large download and you only need the command-line tools for Make. To
install just the command-line tools, open the Terminal and try to run Make by
typing make and hitting return. A box should appear asking you if you want to
install the command-line developer tools. Click Install. Windows users will
have Make installed if they have already installed Rtools (see this chapter’s
Appendix). Mac and Windows users will need to install this software not only
so that GNU Make runs properly, but also so that other command-line tools
work well.

1.5.3 Other tools

We will discuss other tools such as Git that can be a useful part of a re-
producible research workflow. Installation instructions for these tools will be
discussed below.

19LaTeX is really a set of macros for the TeX typesetting system. It is included in all
major TeX distributions.

20To verify this, open the Terminal and type: make –version (I used version 3.81 for
this book). This should output details about the current version of Make installed on your
computer.

https://www.latex-project.org/get/
https://www.latex-project.org/get/

1.6 Book Overview 17

1.6 Book Overview

The purpose of this book is to give you the tools that you will need to do
reproducible research with R and RStudio. This book describes a workflow
for reproducible research primarily using R and RStudio. It is designed to
give you the necessary tools to use this workflow for your own research. It
is not designed to be a complete reference for R, RStudio, knitr/rmarkdown,
Git, or any other program that is a part of this workflow. Instead, it shows
you how these tools can fit together to make your research more reproducible.
To get the most out of these individual programs, I will along the way point
you to other resources that cover these programs in more detail.

To that end, I can recommend a number of resources that cover more of the
nitty-gritty:

• Michael J. Crawley’s (2013) encyclopedic R book, appropriately titled The
R Book, published by Wiley.

• Hadley Whickham (2014a) has a great new book out from Chapman &
Hall on Advanced R.

• Yihui Xie’s (2015) book R Markdown: The Definitive Guide, pub-
lished by Chapman & Hall, is needless to say the definitive guide on R
Markdown syntax. It’s a good complement to this book’s generally more
research project–level focus.

• Cathy O’Neil and Rachel Schutt (2013) give an introduction to the field
of data science generally in Doing Data Science, published by O’Reilly
Media Inc.

• For many real-world examples of reproducible research in action see Kitzes
et al.’s (2018) collection of case studies The Practice of Reproducible
Research.

• For an excellent introduction to the command-line in Linux and Mac, see
William E. Shotts Jr.’s (2012) book The Linux Command-line: A
Complete Introduction published by No Starch Press. It is also helpful
for Windows users running PowerShell (see Chapter 4). Sean Kross’ (2018)
The Unix Workbench is also a great freely available online introduction
to the topic.

• The RStudio website (https://support.rstudio.com/hc/en-us/categ
ories/200035113-Documentation) has a number of useful tutorials on
how to use knitr with LaTeX and Markdown. They also have very good
documentation for rmarkdown at https://rmarkdown.rstudio.com/.

That being said, my goal is for this book to be self-sufficient. A reader without

https://support.rstudio.com/hc/en-us/categories/200035113-Documentation
https://support.rstudio.com/hc/en-us/categories/200035113-Documentation
https://rmarkdown.rstudio.com/

18 1 Introducing Reproducible Research

a detailed understanding of these programs will be able to understand and
use the commands and procedures I cover in this book. While learning how
to use R and the other programs, I personally often encountered illustrative
examples that included commands, variables, and other things that were not
well explained in the texts that I was reading. This caused me to waste many
hours trying to figure out, for example, what the $ is used for (preview: it’s
the component selector). I hope to save you from this wasted time by either
providing a brief explanation of possibly frustrating and mysterious things
and/or pointing you in the direction of good explanations.

1.6.1 How to read this book

This book gives you a workflow. It has a beginning, middle, and end. So, unlike
a reference book, it can and should be read linearly as it takes you through
the organizational steps of an empirical research process from an empty folder
to a completed set of documents that reproducibly showcase your findings.

That being said, readers with more experience using tools like R or LaTeX
may want to skip over the nitty-gritty parts of the book that describe how to
manipulate data frames or compile LaTeX documents into PDFs. Please feel
free to skip these sections.

More experienced R users

If you are an experienced R user you may want to skip over the first section
of Chapter 3: Getting Started with R, RStudio, and knitr/rmarkdown. But
don’t skip over the whole chapter. The latter parts contain important infor-
mation on the knitr/rmarkdown packages. If you are experienced with R data
manipulation, you may also want to skip all of Chapter 7.

More experienced LaTeX users

If you are familiar with LaTeX, you might want to skip the first part of
Chapter 11. The second part may be useful as it includes information on how
to dynamically create BibTeX bibliographies with knitr and how to include
knitr/rmarkdown output in a Beamer slideshow.

Less experienced LaTeX/Markdown users

If you do not have experience with LaTeX or Markdown, you may benefit
from reading, or at least skimming, the introductory chapters on these top
topics (Chapters 11 and 12) before reading Part III.

1.6 Book Overview 19

1.6.2 Reproduce this book

This book practices what it preaches. It can be reproduced. I wrote the book
using the programs and methods that I describe. Full documentation and
source files can be found at the book’s GitHub repository. Feel free to read
and even use (within reason and with attribution, of course) the book’s source
code. You can find it at: https://github.com/christophergandrud/Rep-
Res-Book. This is especially useful if you want to know how to do something
in the book that I don’t directly cover in the text.

If you notice any errors or places where the book can be improved please
report them on the book’s GitHub Issues page: https://github.com/chris
tophergandrud/Rep-Res-Book/issues. Corrections will be posted at: http:
//christophergandrud.github.io/RepResR-RStudio/errata.htm.

1.6.3 Contents overview

The book is broken into four parts. Chapters 2, 3, and 4 give an overview
of the reproducible research workflow as well as the general computer skills
that you’ll need to use this workflow. Each of the next three parts of the
book guides you through the specific skills you will need for each part of the
reproducible research process. Chapters 5, 6, and 7 cover the data gathering
and file storage process. Chapters 8, 9, and 10 teach you how to dynami-
cally incorporate your statistical analysis, results figures, and tables into your
presentation documents. Finally, Chapters 11 and 12 cover how to create re-
producible presentation documents including LaTeX articles, slideshows, and
webpages.

Appendix: Additional R Setup

Some setup is required to reproduce this book. Here are key R packages you
should consider installing and specific instructions for Windows and Linux
users.

R Packages

In this book, I discuss how to use a number of user-written R packages for
reproducible research. Many of these packages are not included in the default
R installation. They need to be installed separately.

https://github.com/christophergandrud/Rep-Res-Book
https://github.com/christophergandrud/Rep-Res-Book
https://github.com/christophergandrud/Rep-Res-Book/issues
https://github.com/christophergandrud/Rep-Res-Book/issues
http://christophergandrud.github.io/RepResR-RStudio/errata.htm
http://christophergandrud.github.io/RepResR-RStudio/errata.htm

20 1 Introducing Reproducible Research

Note: in general you should aim to minimize the number of packages that
your research depends on. Doing so will lessen the possibility that your code
will “break” when a package is updated. This book depends on relatively many
packages because of its special and unusual purpose of illustrating a variety
of tools that you can use for reproducible research.

To install key user-written packages discussed in this book, copy the following
code and paste it into your R console:

Packages to install
pkg_to_install <- c("brew", "brms", "bookdown", "devtools",

"googleVis", "knitr", "rio", "rmarkdown",
"tidyverse", "WDI", "xfun", "texreg",
"xtable")

Check if the packages are installed, if not install them
lapply(

pkg_to_install,
function(pkg) {

if (system.file(package = pkg) == "") {
install.packages(pkg,

repos = "http://cran.us.r-project.org"
)

}
}

)

Note that I specified a US based R Project CRAN “mirror” to download
the packages from.21 There are many others to choose from. See: https:
//cran.r-project.org/mirrors.html.

The xfun package (Xie, 2020d) contains a function called pkg_attach2().
When supplied with a vector of package names like those in pkg_to_install
above, will install all non-installed packages. p_load() from the pacman pack-
age (Rinker and Kurkiewicz, 2019) works in a similar way. These functions
are much less verbose than the example above, but they do require the user
to install the package separately before pkg_attach2() or p_load() can be
used. The example above relies only on functions available in the basic R
installation.

21CRAN stands for the Comprehensive R Archive Network.

https://cran.r-project.org/mirrors.html
https://cran.r-project.org/mirrors.html

1.6 Book Overview 21

Special issues

You may need to install ImageMagick https://www.imagemagick.org/scri
pt/index.php compile the book from source.

If you are using Windows, you will also need to install Rtools. You can install
Rtools from: http://cran.r-project.org/bin/windows/Rtools/. Please
use the recommended installation to ensure that your system PATH is set
up correctly. Otherwise, your computer will not know where the tools are.
Alternatively, use the install.Rtools() function from the installr (Galili
et al., 2018) package to install it.

On Linux, you will need to install the RCurl (Temple Lang and the
CRAN team, 2020) package separately. Use your Terminal to install these
packages with the following (or similar depending on your system) code:

apt-get update

apt-get install libcurl4-gnutls-dev
apt-get install r-cran-rcurl-dev

https://www.imagemagick.org/script/index.php
https://www.imagemagick.org/script/index.php
http://cran.r-project.org/bin/windows/Rtools/

2
Getting Started with Reproducible Research

Researchers often start thinking about making their work reproducible near
the end of the research process when they write up their results or maybe
later when a journal requires their data and code be made available for pub-
lication. Or maybe later when another researcher asks if they can use the
data from a published article to reproduce the findings. By then there may be
numerous versions of the data set and records of the analyses stored across
multiple folders on the researcher’s computers. It can be difficult and time
consuming to sift through these files to create an accurate account of how
the results were reached. Waiting until near the end of the research process
to start thinking about reproducibility can lead to incomplete documentation
that does not give an accurate account of how findings were made. Focusing
on reproducibility from the beginning of the process and continuing to follow
a few simple guidelines throughout your research can help you avoid these
problems. Remember “reproducibility is not an afterthought–it is something
that must be built-into the project from the beginning” (Donoho, 2010, 386).

This chapter first gives you a brief overview of the reproducible research pro-
cess: a workflow for reproducible research. Then it covers some of the key
guidelines that can help make your research more reproducible.

2.1 The Big Picture: A Workflow for Reproducible Re-
search

The three basic stages of a typical computational empirical research project
are:

• data gathering,

• data analysis, and

• results presentation.

Each stage is part of the reproducible research workflow covered in this book.
Tools for reproducibly gathering data are covered in Part II. Part III teaches

23

24 2 Getting Started with Reproducible Research

tools for tying the data we gathered to our statistical analyses and presenting
the results with tables and figures. Part IV discusses how to tie these findings
into a variety of documents you can use to advertise your findings.

Instead of starting to use the individual tools of reproducible research as soon
as you learn them, I recommend briefly stepping back and considering how the
stages of reproducible research tie together. This will make your workflow more
coherent from the beginning and save you a lot of backtracking later on. Figure
2.1 illustrates the workflow. Notice that most of the arrows connecting the
workflow’s parts point in both directions, indicating that you should always
be thinking about how to make it easier to go backward through your research,
i.e. reproduce it, as well as forward.

Around the edges of the figure are some of the functions you will learn to make
it easier to go forward and backward through the process. These functions tie
your research together. For example, you can use API-based R packages to
gather data from the internet. You can use R’s merge() function to combine
data gathered from different sources into one data set. The getURL() function
from R’s RCurl package (Temple Lang and the CRAN team, 2020) and the
read.table() function in base R or the much more versatile import() func-
tion from the rio package (hong Chan and Leeper, 2018) can be used to bring
this data set into your statistical analyses. The knitr or rmarkdown package
then ties your analyses into your presentation documents. This includes the
code you used, the figures you created, and, with the help of tools such as
the kable() function in the knitr package, tables of results. You can even
tie multiple presentation documents together. For example, you can access
the same figure for use in a LaTeX article and a Markdown-created website
with the LaTeX includegraphics function or knitr’s include_graphics()
function. This helps you maintain a consistent presentation of results across
multiple document types. We’ll cover these functions in detail throughout the
book. See Table 2.1 for an additional overview of some of the tie functions.

2.1.1 Reproducible theory

An important part of the research process that I do not discuss in this book is
the theoretical stage. If you are using a deductive research design, the bulk of
this work will precede and guide the data gathering and analysis stages. Just
because I don’t cover this stage of the research process doesn’t mean that
theory building can’t and shouldn’t be reproducible. It can in fact be “the
easiest part to make reproducible” (Vandewalle et al., 2007, 1254). Quotes
and paraphrases from previous works in the literature obviously need to be
fully cited so that others can verify that they accurately reflect the source
material. For mathematically based theory, you should give clear and complete
descriptions of the proofs.

2.2 Practical Tips for Reproducible Research 25

Raw Data

Raw Data

Raw Data

Data Gather Analysis

LaTeX Book,
Article, &
Slideshow
Presentations

Markdown/
HTML Website
Presentations

knitr
input

include

includegraphics

include graphics

Pandoc

knitr
rmarkdown
source

source url

kable

print(xtable())

texreg

import

read.table

getURL

Make

download.file

read.table

import

merge

getURL

API-based
packages

FIGURE 2.1: Example Workflow and a Selection of Functions to Tie It
Together

Though I don’t actively cover theory replication in depth in this book, I do
touch on some of the ways to incorporate proofs and citations into your pre-
sentation documents. These tools are covered in Part IV.

2.2 Practical Tips for Reproducible Research

Before we start learning the details of the reproducible research workflow with
R and RStudio, it’s useful to cover a few broad tips that will help you organize
your research process and put these skills in perspective. The tips are:

1. Document everything!

2. Everything is a (text) file.

3. All files should be human readable.

4. Explicitly tie your files together.

5. Have a plan to organize, store, and make your files available.

26 2 Getting Started with Reproducible Research

Using these tips will help make your computational research really repro-
ducible.

2.2.1 Document everything!

In order to reproduce your research, others must be able to know what you did.
You have to tell them what you did by documenting as much of your research
process as possible. Ideally, you should tell your readers how you gathered
your data, analyzed it, and presented the results. Documenting everything is
the key to reproducible research and lies behind all of the other tips in this
chapter and tools you will learn throughout the book.

Document your R session info

Before discussing the other tips, it’s important to learn a key part of docu-
menting with R. You should record your session info. Many things in R have
stayed the same since it was introduced in the early 1990s. This makes it easy
for future researchers to recreate what was done in the past. However, things
can change from one version of R to another and especially from one version
of an R package to another. Also, the way R functions and how R packages
are handled can vary across different operating systems, so it’s important to
note what system you used. Finally, you may have R set to load packages
by default (see Section 3.1.6 for information about packages). These packages
might be necessary to run your code, but other people might not know what
packages and what versions of the packages were loaded from just looking at
your source code. The sessionInfo() function in R prints a record of all of
these things. The information from the session I used to create this book is:

Print R session info
sessionInfo()

R version 3.6.2 (2019-12-12)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.2
##
Matrix products: default
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base

2.2 Practical Tips for Reproducible Research 27

##
loaded via a namespace (and not attached):
[1] compiler_3.6.2 magrittr_1.5 bookdown_0.17
[4] tools_3.6.2 htmltools_0.4.0 rstudioapi_0.10
[7] yaml_2.2.0 Rcpp_1.0.3 stringi_1.4.5
[10] rmarkdown_2.0 knitr_1.27 stringr_1.4.0
[13] xfun_0.12 digest_0.6.23 rlang_0.4.2
[16] evaluate_0.14

Chapter 4 gives specific details about how to create files with dynamically
included session information. If you used non-R tools you should also record
what versions of these tools you used.

2.2.2 Everything is a (text) file

Your documentation is stored in files that include data, analysis code, the
write-up of results, and explanations of these files (e.g. data set codebooks,
session info files, and so on). Ideally, you should use the simplest file format
possible to store this information. Usually the simplest file format is the hum-
ble, but versatile, text file.1

Text files are extremely nimble. They can hold your data in, for example,
comma-separated values (CSV) format. They can contain your analysis code
in files. And they can be the basis for your presentations written in markup
languages such as Markdown and LaTeX. All of these files can be opened by
any program that can read text files.

One reason reproducible research is best stored in text files is that this helps
future-proof your research. Other file formats, like those used by Microsoft
Word (.docx) or Excel (.xlsx), change regularly and may not be compatible
with future versions of these programs. Text files, on the other hand, can be
opened by a very wide range of currently existing programs and, more likely
than not, future ones as well. Even if future researchers do not have R or a
LaTeX distribution, they will still be able to open your text files and, aided
by frequent comments (see below), be able to understand how you conducted
your research (Bowers, 2011, 3).

Text files are also very easy to search and manipulate with a wide range of
programs–such as R and RStudio–that can find and replace characters as
well as merge and separate files. Finally, text files are easy to version control.
Changes can be tracked using programs such as Git (see Chapter 5).

1Plain text files are usually given the file extension .txt. Depending on the size of your
data set, it may not be feasible to store it as a text file. Nonetheless, text files can still be
used for analysis code and presentation files.

28 2 Getting Started with Reproducible Research

Learn from the text file: keep it simple

Text files are simple. Their simplicitly increases the probability of baseline
usefulness in the future to researchers who will reproduce the work. We can
extend the logic of the simple text file to all of the tools we use: keep it
simple. Avoid adding dependencies you don’t need to actually gather your
data, analyze it, and present the results. For example, I have been tempted to
make my presentation slides look nicer with custom fonts. I was later burned
when I wanted to make minor changes to slides a year after I first presented
them (and a day before teaching an upcoming class) only to find that the
custom fonts were no longer available. This broke my slides and forced me
to spend considerable time reworking writing my source documents. If I, the
creator of the slides, found this time consuming and annoying, an independent
researcher would likely find it even more difficult.

2.2.3 All files should be human readable

Treat all of your research files as if someone who has not worked on the
project will, in the future, try to understand them. Computer code is a way
of communicating with the computer. It is ‘machine readable’ in that the
computer is able to use it to understand what you want to do.2 However, there
is a very good chance that other people (or you six months in the future) will
not understand what you were telling the computer. So, you need to make
all of your files ‘human readable’. To make them human readable, you should
comment on your code with the goal of communicating its design and purpose
(Wilson et al., 2012). With this in mind, it is a good idea to comment frequently
(Bowers, 2011, 3) and format your code using a style guide (Nagler, 1995).
For especially important pieces of code, you should use literate programming–
where the source code and the presentation text describing its design and
purpose appear in the same document. Doing this will make it very clear to
others how you accomplished a piece of research.

Commenting

In R, everything on a line after a hash character (also known as ‘number’,
‘pound’, or ‘sharp’) is ignored by R, but is readable to people who open the
file. The hash character is a comment declaration character. You can use a
hash to place comments telling other people what you are doing. Here are
some examples:

2Of course, if the computer does not understand, it will usually give an error message.

2.2 Practical Tips for Reproducible Research 29

A complete comment line
2 + 2 # A comment after R code

[1] 4

On the first line, the hash is placed at the very beginning, so the entire line is
treated as a comment. On the second line the hash is placed after the simple
equation 2 + 2. R runs the function and finds the answer 4, but it ignores all
of the words after the hash.

Different languages have different comment declaration characters. In LaTeX
everything after the percent sign is treated as a comment, and in Mark-
down/HTML comments are placed inside of <!- ->. The hash character is
used for comment declaration in command-line shell scripts as well as many
other programming languages such as Python and Julia.

Nagler (1995, 491) gives some advice on when and how to use comments:

• write a comment before a block of code describing what the code does,

• comment on any line of code that is ambiguous.

In this book, I follow these guidelines when displaying code. Nagler also sug-
gests that all of your source code files should begin with a comment header.
At the least, the header should include:

• a description of what the file does,

• the date it was last updated,

• the name of the file’s creator and any contributors.

You may also want to include other information in the header such as what files
it depends on, what output files it produces, what version of the programming
language you are using, sources that may have influenced the code, and how
the code is licensed. Here is an example of a minimal file header for an R
source code file that creates the third figure in an article titled ‘My Article’:

############################
R Source code file used to create Figure 3 in 'My Article'
Created by Christopher Gandrud
MIT License
############################

Feel free to use things like the long series of hash marks above and below the
header, white space, and indentations to make your comments more readable.

30 2 Getting Started with Reproducible Research

Style guides

In natural language writing you don’t necessarily have to follow a style guide.
People could probably figure out what you are trying to say, but it is a lot
easier for your readers if you use consistent rules. The same is true when
writing computer code. It’s good to follow consistent rules for formatting your
code so that it’s easier for you and others to understand.

There are a number of R style guides. Most of them are similar to the Google
R Style Guide.3 Hadley Wickham also has a nicely presented R style guide.4
You may want to use the styler (Müller and Walthert, 2019) package to auto-
matically reformat your code so that it is easier to read.

Literate programming

For particularly important pieces of research code, it may be useful to not
only comment on the source file, but also display code in presentation text.
For example, you may want to include key parts of the code you used for
your main statistical models and an explanation of this code in an appendix
following your article. This is commonly referred to as literate programming
(Knuth, 1992).

2.2.4 Explicitly tie your files together

If everything is just a text file, then research projects can be thought of as
individual text files that have a relationship with one another. They are tied
together. A data file is used as input for an analysis file. The results of an
analysis are shown and discussed in a markup file that is used to create a
PDF document. Researchers often do not explicitly document the relationships
between files that they used in their research. For example, the results of
an analysis–a table or figure–may be copied and pasted into a presentation
document. It can be very difficult for future researchers to trace the table or
figure back to a particular statistical model and a particular data set without
clear documentation. Therefore, it is important to make the links between
your files explicit.

Tie functions are the most dynamic way to explicitly link your files together.
These functions instruct the computer program you are using to use infor-
mation from another file. In Table 2.1, I have compiled a selection of key tie
functions you will learn how to use in this book. We’ll discuss many more, but
these are some of the most important.

3See: http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html.
4You can find it at http://adv-r.had.co.nz/Style.html.

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://adv-r.had.co.nz/Style.html

2.2 Practical Tips for Reproducible Research 31

2.2.5 Have a plan to organize, store, and make your files avail-
able

Finally, in order for independent researchers to reproduce your work, they
need to be able access the files that instruct them how to do this. Files also
need to be organized so that independent researchers can figure out how they
fit together. So, from the beginning of your research process, you should have
a plan for organizing your files and a way to make them accessible.

One rule of thumb for organizing your research in files is to limit the amount
of content any one file has. Files that contain many different operations can be
very difficult to navigate, even if they have detailed comments. For example, it
would be very difficult to find any particular operation in a file that contained
the code used to gather the data, run all of the statistical models, and create
the results, figures and tables. If you have a hard time finding things in a file
you created, think of the difficulties independent researchers will have!

Because we have so many ways to link files together, there is really no need
to lump many different operations into one file. So, we can make our files
modular. One source code file should be used to complete one or just a few
tasks. Breaking your operations into discrete parts will also make it easier for
you and others to find errors (Nagler, 1995, 490).

Chapter 4 discusses file organization in much more detail. Chapter 5 teaches
you a number of ways to make your files accessible through the cloud comput-
ing services like GitHub.

32 2 Getting Started with Reproducible Research

TABLE 2.1: A Selection of Functions/Packages/Programs for Tying To-
gether Your Research Files

Function/Package/
Program

Language Description Chapters
Discussed

knitr R R package with commands for tying anal-
ysis code into presentation documents
including those written in LaTeX and
Markdown.

Throughout

rmarkdown R R package that builds on knitr. It al-
lows you to use Markdown to output to
HTML, PDFs compiled with LaTeX or
Microsoft Word.

Throughout

download.file R Downloads a file from the internet. 6

read.table R Reads a table into R. You can use this to
import a plain-text file formatted data
into R.

6

read.csv R Same as read.table with default argu-
ments set to import .csv formatted data
files.

6

import R Reads a table stored locally or on the
internet into R. You can use it to import
a wide variety of plain-text data formats
into R from secure (https) URLs.

6

API-based pack-
ages

R Various packages use APIs to gather
data from the internet.

6

merge R Merges together data frames. 7

source R Runs an R source code file. 8

source_url R From the devtools package. Runs an R
source code file from a secure (https) url
like those used by GitHub.

8

kable R Creates tables from data frames that can
be rendered using Markdown or LaTeX.

9

toLaTeX R Converts R objects to LaTeX. 2

includegraphics LaTeX Inserts a figure into a LaTeX document. 10

include_graphics R/R Markdown Inserts a figure into an R Markdown doc-
ument.

10

 Markdown Inserts a figure into a Markdown docu-
ment.

12

Pandoc shell A shell program for converting files from
one markup language to another. Allows
you to tie presentation documents to-
gether.

12

Make shell A shell program for automatically build-
ing many files at the same time.

6

3
Getting Started with R, RStudio, and knitr/R
Markdown

If you have rarely or never used R before, the first section of this chapter
gives you enough information to be able to get started and understand the
R code I use throughout the book. For more detailed introductions on how
to use R, please refer to the resources mentioned in Chapter 1 (Section 1.6).
Experienced R users might want to skip the first section.

In the second section, I’ll give a brief overview of RStudio. I highlight the key
features of the main RStudio panel (what appears when you open RStudio)
and some of its main tools for reproducible research. Finally, I discuss the
basics of the knitr and rmarkdown packages, how to use them in R, and how
they are integrated into RStudio.

3.1 Using R: The Basics

To get you started with reproducible research, we’ll cover some very basic
R syntax—the rules for talking to R. I cover key parts of the R language
including:

• objects and assignment,

• component selection,

• functions,

• arguments,

• the workspace and history,

• packages.

Before discussing each of these in detail, let’s open R and look around.1 When
you open the R GUI program by clicking on the R icon, you should get a

1Please see Chapter 1 for instructions on how to install R.

33

34 3 Getting Started with R, RStudio, and knitr/R Markdown

window that looks something like Figure 3.1.2 This window is the R console.
Below the start-up information—information about what version of R you are
using, license details, and so on—you should see a > (greater-than sign). This
prompt is where you enter R code.3 To run R code that you have typed after
the prompt, press the Return or Enter key.

Now that we have a new R session open, we can get started.

FIGURE 3.1: R Console at Startup

3.1.1 Objects

If you’ve read a description of the R language before, you will probably have
seen it referred to as an ‘object-oriented language’. What are objects? Objects

2This figure and almost all screenshots in this book were taken on a computer using the
macOS 10.14 operating system.

3If you are using a Unix-like system such as Linux Ubuntu or macOS, you can also access
R via an application called the Terminal. If you have installed R on your computer, you can
type R into the Terminal. This will begin a new R session. You will know you are in a new
R session because the same type of start-up information as in Figure 3.1 will be printed in
your Terminal.

3.1 Using R: The Basics 35

are like the R language’s nouns. They are things, like a vector of numbers, a
data set, a word, a table of results from some analysis, and so on. Saying that
R is object-oriented means that R is focused on doing actions to objects. We
will talk about the actions, functions, later in this section.4 Now let’s create
a few objects.

Numeric and string objects

Objects can have a number of different types. Let’s make two simple objects.
The first is a numeric-type object. The other is a character object.

We can choose almost any name we want for our objects as long as it begins
with an alphabetic character and does not contain spaces.5 Just because there
are relatively few hard restrictions on object names, doesn’t mean that you
should name your object anything. Your code will be much easier to read if
object names are short and meaningful. Give each object a unique name to
avoid confusion and conflicts. For example, if you reuse an object name in an
R session, you could easily accidentally overwrite it.

Let’s begin working with numeric objects by creating a new object called
number with the number 10 in it. Use the assignment operator6 (<-) to put
something into the object:

number <- 10

To see the contents of our object, type its name into the R console.

number

[1] 10

Let’s briefly breakdown this output. 10 is clearly the contents of number. The
double hash (##) is included here to tell you that this is output rather than R
code.7 If you run functions in your R console, you will not get the double hash

4Functions are also objects. In this chapter, I treat them as distinct from other object
types to avoid confusion.

5Wickham (2014a) argues that underscores (_) should be used to separate words in
object names to make the names easier to read. For example: health_data rather than
healthdata. The underscore object naming convention appears to now be the dominant
style in the R community. There are other conventions. These include using periods (.) or
capital letters (referred to as CamelBack) to separate words. For more information on R
naming conventions, see Bååth (2012).

6The assignment operator is sometimes also referred to as the ‘gets arrow’.
7The double hash is generated automatically by knitr. Prepending the output with hashes

makes it easier to copy and paste code into R from a document created by knitr/rmarkdown
because R will ignore everything after a hash.

36 3 Getting Started with R, RStudio, and knitr/R Markdown

in your output. Finally, [1] gives the position in the object that the number
10 is on. Our object only has one position.

Creating an object with words and other characters, a character object, is very
similar. The only difference is that you enclose the character string (letters in a
word for example) inside of single or double quotation marks ('', or "").8 Let’s
create an object called words containing the character string Hello World:

words <- "Hello World"

An object’s type is important to keep in mind. It determines what we can do
to the object. For example, you cannot take the mean of a character object
like the words object:

mean(words)

Warning in mean.default(words): argument is not numeric
or logical: returning NA

[1] NA

Trying to find the mean of our words object gives us a warning message and
returns the value NA: not applicable. You can also think of NA as meaning
“missing”. To find out an object’s type, use the class() function.9 For exam-
ple:

class(words)

[1] "character"

Vector and data frame objects

So far, we have only looked at objects with a single number or character
string.10 Clearly we often want to use objects that have many strings and
numbers. In R these are usually data frame-type objects and are roughly
equivalent to the data structures you would be familiar with from using a
program such as Microsoft Excel. We will be using data frames extensively

8Single and double quotation marks are interchangeable in R for this purpose. In this
book I always use double quotes, except for knitr code chunk options.

9R object types are not fixed. They can be implicitly converted by assigning values of
a different type to them. Other languages, such as Scala, prohibit implicit type conver-
sions. These languages are sometimes referred to as ‘type safe’. They make it impossible to
implicitly change an object’s type, which can sometimes produce errors.

10These might be called scalar objects, though in R, scalars are just vectors with a length
of 1.

3.1 Using R: The Basics 37

throughout the book. Before looking at data frames it is useful to first look
at the simpler objects that make up data frames. These are called vectors.
Vectors are R’s “workhorse” (Matloff, 2011). Knowing how to use vectors will
be especially helpful when you clean up raw data in Chapter 7 and make
tables in Chapter 9.11

Vectors

Vectors are the “fundamental data type” in R (Matloff, 2011). They are an
ordered group of numbers, character strings, and so on.12 It may be useful
to think of most data in R as composed of vectors. For example, data frames
are basically collections of vectors of the same length, i.e. they have the same
number of rows, attached together to form columns.

Let’s create a simple numeric vector containing the numbers 2.8, 2, and 14.8.
To do this, we will use the c() (combine) function and separate the numbers
with commas (,):

numeric_vector <- c(2.8, 2, 14.8)

Show numeric_vector's contents
numeric_vector

[1] 2.8 2.0 14.8

Vectors of character strings are created in a similar way. The only difference
is that each character string is enclosed in quotation marks like this:

character_vector <- c("Albania", "Botswana", "Cambodia")

Show character_vector's contents
character_vector

[1] "Albania" "Botswana" "Cambodia"

Matrices

To give you a preview of what we are going to do when we start working
with real data sets, let’s combine the two vectors numeric_vector and charac-

11If you want information about other types of R objects such as lists and matrices,
Chapter 1 of Norman Matloff’s (2011) book is a really good place to look.

12In a vector, every member of the group must be of the same type. If you want an ordered
group of values with different types, you can use lists.

38 3 Getting Started with R, RStudio, and knitr/R Markdown

ter_vector into a new object with the cbind() function. This function binds
the two vectors together side-by-side as columns.13

string_num_matrix <- cbind(character_vector, numeric_vector)

string_num_matrix

character_vector numeric_vector
[1,] "Albania" "2.8"
[2,] "Botswana" "2"
[3,] "Cambodia" "14.8"

By binding these two objects together, we’ve created a new matrix object.14

You can see that the numbers in the numeric_vector column are between
quotation marks. Matrices, like vectors, can only have one data type, so R has
converted the numbers to strings.

Data frames

If we want to have an object with rows and columns and allow the columns
to contain data with different types, we need to use data frames. Let’s use the
data.frame function to combine the numeric_vector and character_vector
objects.

string_num_df <- data.frame(character_vector, numeric_vector)

string_num_df

character_vector numeric_vector
1 Albania 2.8
2 Botswana 2.0
3 Cambodia 14.8

In this output, you can see the data frame’s names attribute.15 It is the column
names. You can use the names() function to see any data frame’s names:16

names(string_num_df)

13If you want to combine objects as if they were rows of the same column(s), use the
rbind() function.

14Matrices are basically collections of vectors, each represented as a column.
15Matrices can also have a names attribute.
16You can also use names() to assign names for the entire data frame. For example,

names(string_num_df) <- c(variable_1, variable_2)

3.1 Using R: The Basics 39

[1] "character_vector" "numeric_vector"

You will also notice that the first column of the data set has no name and
is a series of numbers. This is the row.names attribute. Data frame rows
can be given any name as long as each row name is unique. We can use the
row.names() function to set the row names from a vector. For example,

Reassign row.names
row.names(string_num_df) <- c("First", "Second", "Third")

Display new row.names
row.names(string_num_df)

[1] "First" "Second" "Third"

You can see in this example how row.names() can also be used to print the row
names.17 The row.names attribute does not behave like a regular data frame
column. You cannot, for example, include it as a variable in a regression. You
can use the row.names() function to assign the row.names values to a regular
column.

You will notice in the output for string_num_df that the strings in the char-
acter_vector column are not in quotation marks. This does not mean that
they are now numeric data. To prove this, try to find the mean of charac-
ter_vector by running it through the mean() function:

mean(string_num_df$character_vector)

Warning in
mean.default(string_num_df$character_vector): argument
is not numeric or logical: returning NA

[1] NA

Component selection

The last bit of code we just saw will probably be confusing. Why do we have
a dollar sign ($) between the name of our data frame object name and the
character_vector variable? The dollar sign is called the component selector.
It’s also sometimes called the element name operator. Either way, it extracts
a part, component, of an object. In the previous example, it extracted the
character_vector column from the string_num_df so that it could be fed
to the mean() function.

17Note that this is really only useful for data frames with few rows.

40 3 Getting Started with R, RStudio, and knitr/R Markdown

We can use the component selector to create new objects with parts of other
objects. Imagine that we have string_num_df and want an object with only
the information in the numeric_vector column. Let’s use the following code:

Extract a numeric vector from string_num_df
numeric_extract <- string_num_df$numeric_vector

numeric_extract

[1] 2.8 2.0 14.8

Knowing how to use the component selector will be especially useful when we
discuss making tables for presentation documents in Chapter 9.

attach() and with()

Using the component selector can create long repetitive code if you want to
select many components. You have to write the object name, a dollar sign,
and the component name every time you want to select a component. You
can streamline your code by using functions such as attach() and with().

attach() attaches a database to R’s search path.18 R will then search the
database for variables you specify. You don’t need to use the component selec-
tor to tell R again to look in a particular data frame after you have attached it.
For example, let’s attach the cars data that comes with R. It has two variables,
speed and dist.19

Attach cars to search path
attach(cars)

Display speed
head(speed)

[1] 4 4 7 7 8 9

Display dist
head(dist)

[1] 2 10 4 22 16 10

We used the head() function to see just the first few values of each variable.

18You can see what is in your current search path with the search function. Just type
search() into your R console.

19For more information on this data set, type ?cars into your R console.

3.1 Using R: The Basics 41

Now that we are done working with the cars data set, we should detach() it.
Not doing so could confuse R later in our session.

detach(cars)

A safer alternative to attach() is with(). It more clearly delineates when to
draw from inside a particular object. For example, we can find the mean of
numeric_vector with() the string_num_df data frame:

with(string_num_df, {
mean(numeric_vector)

}
)

[1] 6.533

In the with() call the data frame object goes first and then the mean() func-
tion20 goes second in curly brackets ({}).

In this book I avoid using the attach() and with() functions. Instead, I use
the component selector. Though it creates longer code, I find that code written
with the component selector is less ambiguous. It’s always clear which object
we are selecting a component from.

Subscripts

Another way to select parts of an object is to use subscripts. You have already
seen subscripts in the output from our examples so far. They are denoted with
square braces ([]). We can use subscripts to select not only columns from data
frames but also rows and individual values. As we began to see in some of the
previous output, each part of a data frame has an address captured by its row
and column number. We can tell R to find a part of an object by putting the
row number/name, column number/name, or both in square braces. The first
part denotes the rows and separated by a comma (,) are the columns.

To give you an idea of how this works, let’s use the cars data set again. Use
head() to get a sense of what this data looks like.

head(cars)

speed dist

20Using R terminology, the second ‘argument’ value, the code after the comma, of the
with() function is called an ‘expression’, because it can contain more than one R function
or statement. See Section 3.1.2 for a more comprehensive discussion of R function arguments.

42 3 Getting Started with R, RStudio, and knitr/R Markdown

1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

We can see a data frame with information on various car speeds (speed) and
stopping distances (dist). If we want to select only the third through seventh
rows, we can use the following subscript function call:

cars[3:7,]

speed dist
3 7 4
4 7 22
5 8 16
6 9 10
7 10 18

The colon (:) creates a sequence of whole numbers from 3 to 7. To select the
fourth row of the dist column, we can type:

cars[4, 2]

[1] 22

An equivalent way to do this is:

cars[4, "dist"]

[1] 22

Finally, we can even include a vector of column names to select:

cars[4, c("speed", "dist")]

speed dist
4 7 22

3.1.2 Functions

If objects are the nouns of the R language, functions are the verbs. They do
things to objects. Let’s use the mean function as an example. This function

3.1 Using R: The Basics 43

takes the mean of a numeric vector object. Remember our numeric_vector
object from before:

numeric_vector

[1] 2.8 2.0 14.8

To find the mean of this object, type:

mean(x = numeric_vector)

[1] 6.533

We use the assignment operator to place a function’s output into an object.
For example:

numeric_vector_mean <- mean(x = numeric_vector)

Notice that we typed the function’s name then enclosed the object name in
parentheses immediately afterwards. This is the basic syntax that all functions
use, i.e. FUNCTION(ARGUMENTS). Even if you don’t want to explicitly include
an argument, you still need to type the parentheses after the function.21

Arguments

Arguments modify what functions do. In our most recent example, we gave the
mean function one argument (x = numeric_vector) telling it that we wanted
to find the mean of numeric_vector. Arguments use the ARGUMENT_LABEL =
VALUE syntax.22 In this case, x is the argument label.

To find all of the arguments that a function can accept, look at the Ar-
guments section of the function’s help file. To access the help file, type:
?FUNCTION. For example:

?mean

The help file will also tell you the default values that the arguments are set to.
You do not need to explicitly set an argument if you want to use its default
value.

21If you don’t include the parentheses after the function name, R will return the source
code for the function just like when you enter an object name into your console returns the
contents. This is because in R, functions are actually also objects!

22Note: you do not have to put spaces between the argument label and the equals sign or
the equals sign and the value. However, having spaces can make your code easier to read.

44 3 Getting Started with R, RStudio, and knitr/R Markdown

You do need to be fairly precise with the syntax for your argument’s values.
Values for logical arguments must be written as TRUE or FALSE.23 Arguments
that accept character strings require quotation marks.

Let’s see how to use multiple arguments with the round() function. This
function rounds a vector of numbers. We can use the digits argument to
specify how many decimal places we want the numbers rounded to. To round
the object numeric_vector_mean to one decimal place, type:

round(x = numeric_vector_mean, digits = 1)

[1] 6.5

Note that arguments are always separated by commas.

Some arguments do not need to be explicitly labeled. For example, we could
write:

Find mean of numeric_vector
mean(numeric_vector)

[1] 6.533

R will do its best to figure out what you want and will only give up when it
can’t. This will generate an error message. However, to avoid any misunder-
standings between yourself and R, it is good practice to label your argument
values. This will also make your code easier for other people to read, i.e. it
will be more reproducible.

You can stack functions inside of arguments. For example, have R find the
mean of numeric_vector and round it to one decimal place:

round(mean(numeric_vector), digits = 1)

[1] 6.5

Stacking functions inside of each other can create code that is difficult to read.
Another option that potentially makes more easily understandable code is pip-
ing using the pipe function (%>%) that you can access from the magrittr (Bache
and Wickham, 2014) or dplyr (Wickham et al., 2019b) packages. The basic
idea behind the pipe function is that the output of one function is set as the
first argument of the next. For example, to find the mean of numeric_vector
and then round it to one decimal place use:

23They can be abbreviated T and F.

3.1 Using R: The Basics 45

Load magrittr package
library(magrittr)

Find mean of numeric_vector and round to 1 decimal place
mean(numeric_vector) %>%

round(digits = 1)

[1] 6.5

3.1.3 The workspace and history

All of the objects you create become part of your workspace, alternatively
known as the current working environment. Use the ls() function to list all
of the objects in your current workspace.24

ls()

[1] "character_vector" "number"
[3] "numeric_extract" "numeric_vector"
[5] "numeric_vector_mean" "pkg_to_install"
[7] "si" "string_num_df"
[9] "string_num_matrix" "words"

You can remove specific objects from the workspace using the rm() function.
For example, to remove the objects character_vector and words type:

rm(character_vector, words)

To save the entire workspace into a binary, not plain-text, RData file use
save.image(). The main argument of save.image() is the location and name
of the file in which you want to save the workspace. If you don’t specify the
file path it will be saved into your current working directory (see Chapter 4
for information on files paths and working directories). To save the current
workspace in a file called workspace-2019-12-22.RData in the current working
directory type:

save.image(file = "workspace-2019-12-22.RData")

Use load() to load a saved workspace back into R:

24Note: your workspace will probably include different objects than this example. These
are objects created to knit the book.

46 3 Getting Started with R, RStudio, and knitr/R Markdown

load(file = "workspace-2019-10-22.RData")

You should generally avoid having R automatically save your workspace when
you quit and reload it when you start R again. Instead, when you return to
a project, rerun the source code files. This avoids any complications caused
when you use an object in your workspace that is left over from running an
older version of the source code.25 In general, I also recommend against saving
data in binary RData formatted files. They are not text files. They are not
human readable. They are much less future-proof.

One of the few times when saving your workspace is useful is when it includes
an object that was computationally difficult and took a long time to create.
In this case, you can save only the large object with save().26 For example, if
we have a very large object called model-output, we can save it to a file called
model-output.RData like this:

save(model-output, file = "model-output.RData")

3.1.4 R history

When you execute code in the R console, it becomes part of your history. Use
the history() function to see the most recent functions in your history, You
can also use the up and down arrows on your keyboard when your cursor is
in the R console to scroll through your history.

3.1.5 Global R options

In R you can set global options with options(). This lets you set how R
runs and outputs functions through an entire R session. For example, to have
output rounded to one decimal place, set the digits argument:

options(digits = 1)

25For example, imagine you create an object, then change the source code you used to
create the object. However, there is a syntax error in the new version of the source code.
The old object won’t be overwritten, and you will be mistakenly using the old object in
future functions.

26save.image() is just a special case of save().

3.2 Using RStudio 47

3.1.6 Installing new packages and loading functions

Functions are stored in R packages. The functions we have used so far were
loaded automatically by default. One of the great things about R is the
many user-created packages27 that expand the number of functions we can
use. To install functions that do not come with the basic R installation, you
need to install the add-on packages that contain them. To do this, use the
install.packages() function. By default, this function downloads and in-
stalls the packages from the Comprehensive R Archive Network (CRAN).

When you install a package, you will likely be given a list of “mirrors” from
which you can download the package. Select the mirror closest to you.

Once you have installed a package, you need to load when you want to use its
functions. Use the library() function to load a package.28 For example, the
following code loads the popular ggplot2 plotting package:

library(ggplot2)

Please note that for the examples in this book I only specify what package a
function is from if it is not loaded by default when you start an R session.

Finally, if you want to make sure R uses a function from a specific package,
you can use the double-colon operator (::). For example, to make sure that
we use the qplot() function from the ggplot2 package, we type:

ggplot2::qplot(. . .)

Using the double-colon ensures that R will use the function from the particular
package you want and makes it clear to a source code reader what package a
function comes from. If you use the double-colon, you don’t need to include
library() beforehand. Note that it does not load all of the functions in the
package, just the one you ask for.

3.2 Using RStudio

As I mentioned in Chapter 1, RStudio is an integrated development environ-
ment for R. It provides a centralized and well-organized place to do almost

27For the latest list, see: http://cran.r-project.org/web/packages/available_package
s_by_name.html.

28You will probably see R packages referred to as “libraries”, though this is a misnomer.

http://cran.r-project.org/web/packages/available_packages_by_name.html
http://cran.r-project.org/web/packages/available_packages_by_name.html

48 3 Getting Started with R, RStudio, and knitr/R Markdown

anything you want to do with R. As we will see later in this chapter, it is
especially well integrated with literate programming tools for reproducible
research. Right now, let’s take a quick tour of the basic RStudio window.

The default window

When you first open RStudio, you should see a default window that looks
like Figure 3.2. In this figure, you see three window panes. The large one
on the left is the Console/Terminal/Jobs pane. The Console pane is an R
console and functions exactly the same as the console discussed so far in this
chapter. Terminal is a command-line terminal where you can run command-
line tools like those we discuss in Chapter 4. The Jobs pane allows you to run
R scripts in the background. This is very useful if you have computationally
time consuming jobs that you would like to run while also doing other work
in RStudio.

The Environment/History/Connections panes are in the upper right-hand cor-
ner. The Environment pane shows you all of the objects in your workspace
and some of their characteristics, like how many observations a data frame
has. You can click on an object in this pane to see a preview of its contents.
This is especially useful for quickly looking at a data set in much the same way
that you can visually scan a Microsoft Excel spreadsheet. The History pane
records all of the functions you have run. It also allows you to rerun code and
insert it into a source code file. The Connections pane allows you to manage
connections to databases such as an SQL server.

In the lower right-hand corner, you will see the Files/Plots/Packages/
Help/Viewer panes. We will discuss the Files pane in more detail in Chap-
ter 4. Basically, it allows you to navigate and organize your files. The Plots
pane is where figures you create in R appear. This pane allows you to see all
of the figures you have created in a session using the right and left arrow icons.
It also lets you copy and save the figures in a variety of formats. The Pack-
ages pane shows the packages you have installed, allows you to load individual
packages by clicking on the dialog box next to them, access their help files
(just click on the package name), update the packages, and even install new
packages. The Help pane shows you help files. You can search for help files
and search within help files using this pane. Finally, the Viewer pane allows
you to view local web content like JavaScript graphics and Shiny apps.

The Source pane

There is an important pane that does not show up when you open RStudio for
the first time. This is the Source pane. The Source pane is where you create,
edit, and run your source code files. It also functions as an editor for your
markup files. It is the center of reproducible research in RStudio.

3.3 Using RStudio 49

FIGURE 3.2: RStudio at Startup

Let’s first look at how to use the Source pane with regular R files. We will then
cover how it works with knitr/rmarkdown in more detail in the next section.

R source code files have the file extension .R. When you create a new source
code document, RStudio will open a new Source pane. Do this by going to the
menu bar and clicking on File New. In the New drop-down menu, you have
the option to create a variety of different source code documents. Select the
R Script option. You should now see a new pane with a bar across the top
that looks like Figure 3.3. To run the R code, you have in your source code file
highlight it29 and click the Run icon on the top bar. This sends the code to the
console where it is run. The icon to the right of Run runs the code above where
you have highlighted. The Source icon next to this runs all of the code in the
file using R’s source() function. When you click on the last icon on the right
(it has a series of stacked lines) you will get a navigable table of contents for
your file; very useful for working with longer documents, especially markup
documents.

29If you are only running one line of code, you don’t need to highlight the code; you can
put your cursor on that line.

50 3 Getting Started with R, RStudio, and knitr/R Markdown

FIGURE 3.3: RStudio Source Code Pane Top Bar

3.3 Using knitr and R Markdown: The Basics

To get started with knitr and R Markdown in R or RStudio, we need to learn
some of the basic concepts and syntax. The concepts are the same regardless
of the markup language we are knitting R code with, but much of the syntax
varies by markup language. rmarkdown relies on knitr and a utility called Pan-
doc to create many different types of presentation documents (HTML, PDF,
or MS Word) from one document written largely using knitr’s R Markdown
syntax.

3.3.1 What knitr does

Let’s take a quick, abstract look at what the knitr package does. As I’ve
mentioned, knitr ties together your presentation of results with the creation
of those results. The knitr process takes three steps (see Figure 3.4). First,
we create a knittable markup document. This contains both the analysis code
and the presentation document’s markup which is the text and rules for how
to format the text. knitr then knits: i.e. it runs the analysis code and converts
the output into the markup language you are using according to the rules
that you tell it to use. It inserts the marked up results into a document that
only contains markup for the presentation document. You compile this markup
document as you would if you hadn’t used knitr into your final PDF document
or webpage presenting your results.

3.3.2 What rmarkdown does

The rmarkdown package implements a variation on this process that utilizes a
program called Pandoc to create presentation documents in multiple formats
from a knittable document written in Markdown. The main difference between
pure knitr markdown and rmarkdown documents is the inclusion of a header
specifying how you want to render the document with Pandoc.30

The header is written in YAML.31 The YAML header can include information
30Note that you can also create an rmarkdown document without a header. rmarkdown

will just use the default settings when knitting.
31YAML is a recursive acronym that means, “YAML Ain’t Markup Language”.

3.3 Using knitr and R Markdown: The Basics 51

Knit Compile

Knittable
Document
(Markup +
Code Chunks)

Markup Only
Document

Presentation
Document

knitr LaTeX Example

Paper.Rnw Paper.tex Paper.pdf

knitr/R Markdown Markdown Example

Website.Rmd Website.md Website.html

FIGURE 3.4: Knitr/R Markdown Process

such as the document’s title, author, whether or not to include a table of
contents, and a link to a BibTeX bibliography file. YAML is a straightforward
data format that organizes information in a simple hierarchy. The header
begins and ends with three dashes (---). Information keys–like “title” and
“author”–are separated from their associated “values” by a colon (:). Sub-
values of a hierarchy are denoted by being placed on a new line and indented.32

Here is a basic R Markdown header that indicates the document’s title, author,
and date, and that it will be turned into a PDF document (via LaTeX).

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "2019-12-28"
output: pdf_document:

toc: true
—--

The title, author, and date will be placed at the beginning of the output
document. The final line (toc: true) creates a table of contents near the

32It doesn’t matter how many spaces you use to indent, as long as all indentations have
the same number of spaces.

52 3 Getting Started with R, RStudio, and knitr/R Markdown

beginning of the PDF document when we knit it. We will discuss more header
options in Chapter 12.

RStudio can automatically create a basic header for the type of output doc-
ument that you want when you open a new R Markdown file. Simply select
File then R Markdown…. A window will appear that looks like Figure 3.5. In
this window select the type of output document you want to create and click
Ok.

In addition to the header, R Markdown differs from basic knitr files in that
you can include Pandoc syntax in your R Markdown document. This can
be useful for bibliographies as we will discuss in Chapter 12. Nonetheless,
remember that apart from the header and ability to include Pandoc syntax,
at the simplest level R Markdown documents are knitr documents written in
R Markdown syntax. They have the same code chunk syntax, as we will see
shortly.

FIGURE 3.5: The New R Markdown Options Window

3.3 Using knitr and R Markdown: The Basics 53

3.3.3 File extensions

When you save a knittable file, use a file extension that indicates (a) that it is
knittable and (b) what markup language it is using. You can use a number of
file extensions for R Markdown files including: .Rmd and .Rmarkdown.33 LaTeX
documents that include knitr code chunks are generally called R Sweave files
and have the file extension .Rnw. This terminology is a little confusing.34

It is a holdover from knitr’s main literate programming predecessor Sweave.
Note that rmarkdown documents can compile to LaTeX PDF documents and
support pretty much the full capabilities of LaTeX. Because markdown is
generally easier to write than raw LaTeX, .Rnw markup is much less commonly
used. For example, I converted the third edition of this book from .Rnw to
.Rmd.

3.3.4 Code chunks

Use code chunks to include knittable R code into your markup presentation
documents. Code chunk syntax differs depending on the markup language we
are using to write our documents. Let’s see the syntax for R Markdown and R
LaTeX files. If you are unfamiliar with basic LaTeX or Markdown syntax, you
might want to skim Chapters 11 and 12 to familiarize yourself with it before
reading this section.

R Markdown

In R Markdown files, we begin a code chunk by writing the head: ```{r}. A
code chunk is closed, ended, with: ```. For example:

```{r}
# Example of an R Markdown code chunk
string_num_matrix <- cbind(character_vector, numeric_vector)
```

The R Markdown code chunk syntax is exactly the same for markdown files
you compile with knitr or rmarkdown.

33R Markdown files that you compile with knitr or rmarkdown have the same .Rmd file
extension.

34The “nw” refers to the noweb simple literate programming tool that Sweave built on
(Leisch, 2002; Ramsey, 2011).

54 3 Getting Started with R, RStudio, and knitr/R Markdown

R LaTeX (.Rnw)

Code chunks are delimited in non-R Markdown R LaTeX documents in a way
that emulates the long-established Sweave syntax. Sweave-style code chunks
begin with the following head: <<>>=. The code chunk is closed with an at
sign (@).

<< >>=
string_num_matrix <- cbind(character_vector, numeric_vector)
@

Code chunk labels

Each chunk has a label. When a code chunk creates a plot or the output is
cached, stored for future use, knitr uses the chunk label for the new file’s
name. If you do not explicitly give the chunk a label it will be assigned one
like: unnamed-chunk-1.

To explicitly assign chunk labels in R Markdown documents, place the label
name inside of the braces after the r. If we wanted to use the, admittedly not
descriptive, label ex-label we type:

```{r ex-label}
# Example chunk label
```

The same general format applies to the two types of LaTeX chunks. In Sweave-
style chunks, we type: <<ex-label>>=. Try not to use spaces or periods in your
label names. Also remember that chunk labels must be unique.

Code chunk options

There are many times when we want to change how our code chunks are
knitted and presented. Maybe we only want to show the code and not the
results. Perhaps we don’t want to show the code at all but just a figure that it
produces. Maybe we want the figure to be formatted on a page in a certain way.
To make these changes and many others, we can specify code chunk options.

Like chunk labels, you specify options in the chunk head. Place them after
the chunk label, separated by a comma. Chunk options are written following
pretty much the same rules as regular R function arguments. They have a
similar OPTION_LABEL=VALUE structure as arguments. The option values must
be written in the same way that argument values are. Character strings need to
be inside of quotation marks. The logical TRUE and FALSE operators cannot be

3.3 Using knitr and R Markdown: The Basics 55

written "true" and "false". For example, imagine we have a Markdown code
chunk called ex-label. If we want to run the code chunk, but not show the
code in the final presentation document, we can use the option echo=FALSE.

```{r ex-label, echo=FALSE}
string_num_matrix <- cbind(character_vector, numeric_vector)
```

Note that all labels and code chunk options must be on the same line. Options
are separated by commas. The syntax for knitr options is the same regardless
of the markup language.

Throughout this book, we will look at a number of different code chunk options.
Many of the chunk options we will use in this book are listed in Table 3.1. For
the full list of knitr options, see the knitr chunk options page maintained by
knitr’s creator Yihui Xie: http://yihui.name/knitr/options.

3.3.5 Global chunk options

So far, we have only looked at how to set local options in knitr code chunks,
i.e. options for only one specific chunk. If we want an option to apply to all
of the chunks in our document, we can set global chunk options. Options are
‘global’ in the sense that they apply to the entire document. Setting global
chunk options helps us create documents that are formatted consistently with-
out having to repetitively specify the same option every time we create a new
code chunk. For example, rather than using the fig.align='center' option
in each code chunk that creates a figure, we can center align all figures in a
document by setting the option globally.

To set a global option, first create a new code chunk at the beginning of your
document.35 You will probably want to set the option include=FALSE so that
knitr doesn’t include the code in your presentation document. Inside the code
chunk, use opts_chunk$set. You can set any chunk option as an argument
to opts_chunk$set. The option will be applied across your document, unless
you set a different local option.

Here is an example of how you can center align all of the figures in R Markdown
in a chunk placed near the beginning of the document:

```{r set-global, include=FALSE}
# Center align all knitr generated figures

35In Markdown, you can put global chunk options at the very top of the document. In
.Rnw documents, they should be placed after the \begin{document} function. See Chapter
11 for more information on how LaTeX documents are structured.

http://yihui.name/knitr/options


56 3 Getting Started with R, RStudio, and knitr/R Markdown

TABLE 3.1: A Selection of knitr Code Chunk Options

Chunk Option Label Type Description

cache Logical Whether or not to save results from the
code chunk in a cache database. Note:
cached chunks are only run when they
are changed.

cache.vars Character Vector Specify the variable names to save in
the cache database.

eval Logical Whether or not to run the chunk.

echo Logical Whether or not to include the code in
the presentation document.

error Logical Whether or not to include error
messages.

engine Character Set the programming language for knitr
to evaluate the code chunk with.

fig.align Character Align figures. (Note: does not work with
R Markdown documents.)

fig.path Character Set the directory where figures will be
saved.

include Logical When include=FALSE the chunk is eval-
uated, but the results are not included
in the presentation document.

message Logical Whether or not to include R messages.

out.height Numeric Set figures’ heights in the presentation
document.

out.width Numeric Set figures’ widths in the presentation
document.

results Character How to include results in the presenta-
tion document.

tidy Logical Whether or not to have knitr format
printed code chunks.

warning Logical Whether or not to include warnings.
These functions are discussed in more detail in Chapter 8.



3.3 Using knitr and R Markdown: The Basics 57

knitr::opts_chunk$set(fig.align='center')
```

If you want to use opts_chunk in a document rendered with rmarkdown, you
will need to either explicitly call it as in the example using the double colon
or load the knitr package before calling it.

3.3.6 knitr package options

knitr package options affect how the package itself runs. For example, the
progress option can be set as either TRUE or FALSE 36 depending on whether
or not you want a progress bar to be displayed when you knit a code chunk.
You can use base.dir to set the directory where you want all of your figures
to be saved (see Chapter 4).

You set package options in a similar way as global chunk options with
opts_knitr$set. For example, include this code at the beginning of a docu-
ment to turn off the progress bar when it is knitted:

```{r set-pkg-opt, include=FALSE}
# Don't show progress bars
knitr::opts_knit$set(progress=FALSE)
```

3.3.7 Hooks

You can also set hooks. Hooks come in two types: chunk hooks and output
hooks. Chunk hooks run a function before or after a code chunk. Output hooks
change how the raw output is formatted. I don’t cover hooks in much detail
in this book. For more information on hooks, please see Yihui Xie’s webpage:
http://yihui.name/knitr/hooks.

3.3.8 knitr, R Markdown, and RStudio

RStudio is highly integrated with knitr/R Markdown and the markup lan-
guages that they work with. RStudio is probably the easiest tool for creating
and compiling knitr/R Markdown. Most of the RStudio/knitr/R Markdown
features are accessed in the Source pane. The Source pane’s appearance and
capabilities change depending on the type of file you have open in it. RStudio

36It’s set as TRUE by default.

http://yihui.name/knitr/hooks

58 3 Getting Started with R, RStudio, and knitr/R Markdown

uses a file’s extension and, if it is an rmarkdown document, its header, to
determine what type of file you have open.37 We have already seen some of
the features the Source pane has for R source code files. Let’s now look at how
to use knitr and rmarkdown with R source code files as well as the markup
formats we cover in this book: R Markdown and R LaTeX.

Compiling R source code Notebooks

If you want a quick, well-formatted account of the code that you ran and the
results that you got you can use RStudio’s “Compile Notebook” capabilities.
RStudio uses rmarkdown to create a standalone file presenting your source
code and results. It will include all of the code from an R source file as well
as the output. This can be useful for quickly presenting the steps you took to
do an analysis. You can see an example RStudio Notebook in Figure 3.6.

If you want to create a Notebook from an open R source code file click the

Compile Notebook icon () in the Source pane’s top bar.38 Then in the
window that pops up select the output type you would like (HTML, PDF or
MS Word) and click the Compile button. For this example I selected HTML. In
Figure 3.6 you can see near the top center right a small globe icon next to the
word “Publish”. Clicking this allows you to publish your Notebook to RPubs
(http://www.rpubs.com/). RPubs is a site for sharing your Notebooks over
the internet. You can publish not only Notebooks, but also any R Markdown
document you compile in RStudio.

In this chapter’s appendix we discuss interactive Jupyter notebooks. They are
popular in the data science and tech industries and use a somewhat different
logic from R Markdown notebooks.

My current tech team tends to use either Jupyter notebooks or R Mark-
down Notebooks to present our detailed analyses. We host and share these
via GitHub. GitHub compiles both document types nicely for online access.
For R Markdown Notebooks, use output: github_document in the header
to ensure that the output file is compiled properly on GitHub.

R Markdown

Figure 3.7 is what the Source pane looks like when you have an R Markdown
file open. You’ll notice the familiar Run button for running R code. It now
includes a drop-down menu for running code chunks. It includes options like
Run Current Chunk, i.e. run the chunk where your cursor is located, Run

37You can manually set how you want the Source pane to act by selecting the file type
using the drop-down menu in the lower right-hand corner of the Source pane.

38Alternatively, File Compile Notebook...

http://www.rpubs.com/

3.3 Using knitr and R Markdown: The Basics 59

FIGURE 3.6: RStudio Notebook Example

60 3 Getting Started with R, RStudio, and knitr/R Markdown

FIGURE 3.7: RStudio Source Pane for an RMarkdown File

Next Chunk, and Run All chunks. In this menu, you can select Insert Chunk
to insert the basic syntax required for a code chunk. You can navigate to a
specific chunk using a drop-down menu on the bottom left-hand side of the
Source pane. This can be very useful if you are working with a long document.
To knit your file, click the Knit icon on the left side of the Source pane’s
top bar. If you click on the downward arrow on the right of this icon, you
will be given the opportunity to knit the document to HTML, PDF, or, MS
Word using rmarkdown. Helpfully, the R Markdown Source pane’s top bar
also includes the ABC spell check icon.

RStudio can properly highlight both the markup language syntax and the R
code in the Source pane. This makes your source code much easier to read and
navigate. RStudio can also fold code chunks. This makes navigating through
long documents, with long code chunks, much easier. At line 1014 in Figure
3.7, you can see a small downward facing arrow. If you were to click this arrow,
the code chunk would collapse to look like line 1021 in Figure 3.7. To unfold
the chunk, just click on the arrow again.

3.3 Using knitr and R Markdown: The Basics 61

You may also notice that there is a code folding arrow on line 1015 in Figure
3.7. This allows us to fold parts of the code chunk. To enable this option,
create a comment line with at least one hash before the comment text and at
least four after it like this:

An RStudio Foldable Comment

You will be able to fold all of the text after this comment up until the next
similarly formatted comment (or the end of the chunk).

R (Sweave) LaTeX

Many of the Source pane options for R (.Rnw) LaTeX files are the same as
R Markdown files, the key differences being that there is a Compile PDF icon
instead of Knit. Clicking this icon knits the file and creates a PDF file in
your R LaTeX file’s directory. There is also a Format icon instead of the
question mark icon. This actually inserts LaTeX formatting functions into
your document for things such as section headings and bullet lists. These
functions can be very tedious to type out by hand otherwise.

By default, RStudio may be set up to use Sweave for compiling LaTeX docu-
ments. To use knitr instead of Sweave to knit .Rnw files you should click on
Tools in the RStudio menu bar, then click on Global Options.... Once the
Options window opens, click on the Sweave button. Select knitr from the
drop-down menu for “Weave Rnw files using:”. Finally, click Apply.39

In the Sweave options menu, you can also set which LaTeX typesetting engine
to use. By default, it is set to the more established engine pdfLaTeX. Another
option is XeLaTeX. XeLaTeX has the ability to use many more characters
than pdfLaTeX as it works with UTF-8 encoded input. It can also use any
font on your computer. XeLaTeX is especially useful compared to pdfLaTeX
if you are using characters that are not found in standard English.

3.3.9 knitr and R

As knitr is a regular R package, you can of course, knit documents in R
(or using the console in RStudio). All of the knitr syntax in your markup
document is the same as before, but instead of clicking a Compile PDF or knit
HTML button, use the knit() function. To knit a hypothetical Markdown file
example.Rmd you first use the setwd() function to set the working directory

39In the Mac version of RStudio, you can also access the Options window via RStudio
Preferences in the menu bar.

62 3 Getting Started with R, RStudio, and knitr/R Markdown

(for more details see Chapter 4) to the folder where the example.Rmd file is
located. In this example, it is located in the Documents folder.40

setwd("/Documents/")

Then you knit() the file:

knit(input = "example.Rmd", output = "example.md")

You use the same steps for all other knittable document types. Note that if
you do not specify the output file, knitr will determine what the file name and
extension should be. In this example it would come up with the same name
and location as we gave it.

In this example, using the knit() function only creates a Markdown file and
not an HTML file, as clicking Knit in RStudio did. Likewise, if you use on a
.Rnw file you will only end up with a basic LaTeX .tex file and not a compiled
PDF. To convert the Markdown file into HTML, you need to further run the
.md file through the markdownToHTML() function from the markdown package,
i.e.:

markdownToHTML(file = "example.md", output = "example.html")

This is a bit tedious. Luckily, there is a function in the knitr package that
combines markdownToHTML() and knit(). It is called knit2html(). You use
it like this:

knit2html(file = "example.Rmd", output = "example.html")

If we want to compile a .tex file in R, we run it through the texi2pdf() func-
tion from the tools package. This package will run both LaTeX and BibTeX
to create a PDF with a bibliography. See Chapter 11 for more details on using
BibTeX for bibliographies. Here is a texi2pdf() example:

Load tools package
library(tools)

Compile pdf
texi2pdf(file = "example.tex")

40Using the directory name is for Mac computers. Please use alternative syntax discussed
in Chapter 4 on other types of systems.

3.3 Using knitr and R Markdown: The Basics 63

Just like with knit2html(), you can simplify this process by using the
knit2pdf() function to compile a PDF file from a .Rnw document.

3.3.10 R Markdown and R

Just as knitr is an R package that you can run from the console, you can
also run rmarkdown from the console. Instead of the knit(), function use
render(). Imagine that example.Rmd now has an rmarkdown header:

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "2018-10-28"
output:

pdf_document:
toc: true

html_document:
toc: false

—--

This header specifies how the file can be compiled to either PDF or HTML.
When compiled to PDF, it will include a table of contents. When compiled to
HTML, it won’t. Now we use render():

render("example.Rmd")

This call will compile the document to a PDF in the working directory, because
PDF is listed as the first output format in the header. The document will be
called example.pdf. Alternatively, to compile the R Markdown file to HTML
use:

render("example.Rmd", "html_document")

We could compile to both formats using:

render("example.Rmd", "all")

or

render("example.Rmd", c("pdf_document", "html_document"))

In all of these cases, render() will create, but not keep the intermediate .md

64 3 Getting Started with R, RStudio, and knitr/R Markdown

or .tex document. You can have these documents saved by adding keep_md or
keep_tex to the header. For example:

output:
pdf_document:

toc: true
keep_tex: true

html_document:
keep_md: true

toc: false
—--

Finally, if you want to output to one format with the default rendering style,
for example, the HTML document, use html_document: default.

Chapter summary

We’ve covered a lot of ground in this chapter, including R basics, how to
use RStudio, and knitr/R Markdown syntax for multiple markup languages.
These tools, especially R and knitr/R Markdown, are fundamental to the
reproducible research process we will learn in this book. They enable us to
create dynamic text-based files that record our research steps in detail. In the
next chapter, we will look at how to organize files created with these types of
tools into reproducible research projects.

Appendix: Jupyter Interactive
Notebooks

Jupyter notebooks are a commonly used alternative to R Markdown notebooks
and knitr generally for displaying and discussing computational analyses. They
are especially prevalent in the data science industry. For example, I never used
Jupyter notebooks during my academic life in the quantitative social sciences,
but after moving to the tech industry I regularly write and read them. A
reason for this is that they are useful for fast prototyping data analyses, as
they are interactive. You run the code directly in the notebook and see the
results printed in the notebook immediately.

Jupyter is often associated with Python, but the name ‘Jupyter’ actually refers
to three languages used in data science Julia, Python, and R and can be used
with other languages as well.

This book is clearly focused on R Markdown, but if you would like to explore
launching Jupyter from R, see the IRkernel package (Kluyver et al., 2019).
Though personally I have been launching Jupyter from Python or Julia, as
the installation is more straightforward. In fact, the Python installation is a
prerequisite for IRkernel. For more details, see:

• Python installation instructions: http://jupyter.org/install.html,

• Julia installation instructions: https://github.com/JuliaLang/IJulia.
jl.

Controversy

In mid-2019 there was a major controversy about Jupyter notebooks (well
at least a topic heavily discussed on data science Twitter). Joel Grus started
the controversy by giving a talk at the main Jupyter conference, JupyterCon,
called, ‘I Don’t Like Notebooks’.41

His critique was multi-pronged, but one critique that resonated with my strong

41The presentation is available here: https://docs.google.com/presentation/d/1n2Rl
Mdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/preview?slide=id.g362da58057_0_1. For a
comprehensive discussion of the ‘first notebook war’ by Yihui Xie, see: https://yihui.
name/en/2018/09/notebook-war/.

65

http://jupyter.org/install.html
https://github.com/JuliaLang/IJulia.jl
https://github.com/JuliaLang/IJulia.jl
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/preview?slide=id.g362da58057_0_1
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/preview?slide=id.g362da58057_0_1
https://yihui.name/en/2018/09/notebook-war/
https://yihui.name/en/2018/09/notebook-war/

66 3 Appendix: Jupyter Interactive Notebooks

interest in reproducibility (and personal experience using these notebooks) is
that you can execute code in Jupyter notebooks in an arbitrary order. Using
R Markdown terminology: you could execute the third code chunk before
the second and then make changes to and rerun the second chunk without
rerunning the third. This is troubling for reproducibility, as it is difficult for
a third person (or yourself a few minutes later) to know what order the code
was executed in to get the displayed results. Jupyter notebooks do record the
order in which code was executed within the same session, but this adds an
additional layer of complexity to figuring out results. The order also becomes
inconsistent when a notebook is relaunched.

R Markdown vs. Jupyter

A big reason that I personally prefer R Markdown over Jupyter is that it
provides the ‘best of both worlds’. RStudio allows you to interact with R
Markdown documents in a very similar way to Jupyter notebooks (see Figure
3.8). To enable fast prototyping, you can interactively run code chunks in any
order and immediately see the results in line with the markup. It also channels
you towards running the code in order when you knit the document before
you share it with others.42

FIGURE 3.8: R Markdown Interactive Behavior Example in RStudio

42See Nathan Stephens’ 2017 blog post further making the case for R Notebooks: https:
//rviews.rstudio.com/2017/03/15/why-i-love-r-notebooks/.

https://rviews.rstudio.com/2017/03/15/why-i-love-r-notebooks/
https://rviews.rstudio.com/2017/03/15/why-i-love-r-notebooks/

Appendix: knitr and Lyx

You may be more comfortable using a what-you-see-is-what-you-get (WYSI-
WYG) editor, similar to Microsoft Word. Lyx is a WYSIWYG LaTeX editor
that can be used with knitr. I don’t cover Lyx in detail in this book, but here
is a little information to get you started.

Setup

To set up Lyx so that it can compile .Rnw files, click Document in the menu bar,
then Settings. In the left-hand panel, the second option is Modules. Click
on Modules and select Rnw (knitr). Click Add, then Ok. Now, compile your
LaTeX document in the normal Lyx way.

Code Chunks

Enter code chunks into TeX Code blocks within your Lyx documents. To
create a new TeX Code block, select Insert from the menu bar, then TeX
Code.

67

4
Getting Started with File Management

Careful file management is crucial for reproducible research. Remember two
of the guidelines from Chapter 2:

• Explicitly tie your files together.

• Have a plan to organize, store, and make your files available.

Apart from the times when you have an email exchange (or even meet in
person) with someone interested in reproducing your research, the main in-
formation independent researchers have about the procedures is what they
access in files you make available: data files, analysis files, and presentation
files. If these files are well organized and the way they are tied together is
clear, replication will be much easier. File management is also important for
you as a researcher, because if your files are well organized, you will be able
to more easily make changes, benefit from work you have already done, and
collaborate with others.

Using tools such as R, knitr/R Markdown, and markup languages like LaTeX
requires fairly detailed knowledge of where files are stored in your computer.
Handling files to enable reproducibility may require you to use command-line
tools to access and organize your files. R and Unix-like shell programs allow
you to control files—creating, deleting, relocating—in powerful and really re-
producible ways. By typing these commands you are documenting every step
you take. This is a major advantage over graphical user interface-type systems
where you organize files by clicking and dragging them with the cursor. How-
ever, typed commands require you to know your files’ specific addresses, their
file paths.

In this chapter we discuss how a reproducible research project may be or-
ganized and cover the basics of file path naming conventions in Unix-like
operating systems, such as macOS and Linux, and Windows. We then learn
how to organize them with RStudio Projects. We’ll cover some basic R and
Unix-like shell commands for manipulating files as well as how to navigate
through files in RStudio in the Files pane. The skills you will learn in this
chapter will be heavily used in the next chapter (Chapter 5) and throughout
the book.

In this chapter we work with locally stored files, i.e. files stored on your com-

69

70 4 Getting Started with File Management

puter. In the next chapter, we will discuss various ways to store and access
files remotely stored in the cloud.

4.1 File Paths and Naming Conventions

All of the operating systems covered in this book organize files in hierarchi-
cal directories, also known as file trees. To a large extent, directories can be
thought of as the folders you usually see on your Windows or Mac desktop.1
They are called hierarchical because directories are located inside of other
directories, as in Figure 4.1.2

4.1.1 Root directories

A root directory is the first level in a disk, such as a hard drive. It is the root
out of which the file tree ‘grows’. All other directories are sub-directories of
the root directory.

On Windows computers you can have multiple root directories, one for each
storage device or partition of a storage device. The root directory is given a
drive letter assignment. If you use Windows regularly, you will most likely be
familiar with C:\ used to denote the C partition of the hard drive. This is
a root directory. On Unix-like systems, including Macs and Linux computers,
the root directory is denoted by a forward slash (/) with nothing before it.

4.1.2 Sub-directories and parent directories

You will probably not store all of your files in the root directory. This would
get very messy. Instead, you will store your files in sub-directories of the root
directory. Inside of these sub-directories may be further sub-directories and so
on. A directory inside of another directory is referred to as a child directory
of a parent directory.

On Windows computers, separate sub-directories are indicated with a
back slash (\). For example, if we have a folder called data inside of
a folder called example-project which is located in the C root directory,

1To simplify things, I use the terms ‘directory’ and ‘folder’ interchangeably in this book.
2The command line utility tree is very useful for visualizing your file trees. For more

information, see https://en.wikipedia.org/wiki/Tree_(command).

https://en.wikipedia.org/wiki/Tree_(command)

4.1 File Paths and Naming Conventions 71

it has the address C:\example-project\data.3 When you type Windows
file paths into R, you need to use two backslashes rather than one: e.g.
C:\\example-project\\data. This is because the \ is an escape character
in R.4 Escape characters tell R to interpret the next character or sequence
of characters differently. For example, in Section 5.1 you’ll see how \t can
be interpreted by R as a tab rather than the letter “t”. Add another escape
character to neutralize the escape character so that R interprets it as a back-
slash. In other words, use an escape character to escape the escape character.
Another option for writing Windows file names in R is to use one forward
slash (/).

On Unix-like systems, including Mac computers, directories are indicated with
a forward slash (/). The file path of the data file on a Unix-like system would
be: /example-project/data. Remember that a forward slash with nothing
before it indicates the root directory. So /example-project/data has a differ-
ent meaning than example-project/data. In the former, example-project is
a sub-directory of the root. In the latter, example-project is a sub-directory of
the current working directory (see below for details about working directories).
This is also true in Windows.

In this chapter, I switch between the two file system naming conventions to
expose you to both. In subsequent chapters, I use Unix-like file paths. When
you use relative paths (see below), these will work across operating systems
in R. We’ll get to relative paths in a moment.

4.1.3 Working directories

When you use R, markup languages, and many of the other tools covered in
this book, it is important to keep in mind what your current working directory
is. The working directory is the directory where the program automatically
looks for files and other directories, unless you tell it to look elsewhere. It is
also where it will save files. Later in this chapter, we will cover functions for
finding and changing the working directory.

4.1.4 Absolute vs. relative paths

For reproducible research, collaborative research, and even if you ever change
the computer you work on, it is a good idea to use relative rather than absolute
file paths. Absolute file paths give the entire path of a given file or directory
on a specific system. For example, /example-project/data is an absolute

3For more information on Windows file path names, see this helpful website: http://ms
dn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx

4As we will see in Part IV, it is also a LaTeX and Markdown escape character.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx

72 4 Getting Started with File Management

Root

example-project

paper.Rmd

slideshow.Rmd

website.Rmd

main.bib

data

main-data.csv

Makefile

merge-data.R

gather-1.R

gather-2.R

main-data-variable-descriptions.md

README.Rmd

analysis

analysis-1.R

analysis-2.R

README.md

example-project.Rproj

FIGURE 4.1: Example Research Project File Tree

path. It specifies the path of the data child directory all the way back to the
root directory. However, if our current working directory is example-project
and we want to link to the data child directory or a file in it, we don’t need
the absolute path. We could use data/, i.e. the path relative to the working
directory.

It is good practice to use relative paths and organize your files such that
using relative paths is easy. This makes your code less dependent on the par-
ticular file structure of a particular computer. For example, imagine you use
C:\\example-project\\data in your source code to link to the data direc-
tory. If someone—a collaborator, a researcher reproducing your work, or even
you—then tries to run the code on a different computer, the code will break
if they are, for instance, using a Unix-like system or have placed example-
project in a different partition of their hard drive. This can be fixed relatively
by changing the file path in the source. However, this is tedious (often not
well documented) and unnecessary if you use relative file paths.

Below we’ll see how to use RStudio Projects and also the here package (Müller,
2017) to automatically set working directories so that your relative file paths
will transport even more easily across computers.

4.2 Organizing Your Research Project 73

The ProjectTemplate package (White, 2019) provides functions to help set up
a well structured research project file tree. We don’t use it in the following
examples, but you may find it useful in your own work.

4.1.5 Spaces in directory and file names

It is good practice to avoid putting spaces in your file and directory names. For
example, I called the example project parent directory in Figure 4.1 “example-
project” rather than “Example Project”. Spaces in file and directory names
can sometimes create problems for computer programs trying to read the file
path. The program may believe that the space indicates that the path name
has ended. To make multi-word names easily readable without using spaces,
adopt a consistent naming convention.

One approach is to use a convention that contrasts with the R object naming
convention you are using. A contrasting convention helps make it clear if some-
thing is an R object or a file name. For example, if we adopt the underscore
method for R object names used in Chapter 3 (e.g. health_data) we could use
hyphens (-) to separate words in file names. For example: example-source.R.
This is sometimes called kebab-case.

4.2 Organizing Your Research Project

Figure 4.1 gives an example of how the files in a simple reproducible re-
search project could be organized. The project’s parent directory is called
example-project. Inside this directory are the primary knittable documents
(paper.Rmd slideshow.Rmd, and website.Rmd). In addition, there is an analy-
sis sub-directory with the R files to run the statistical analyses followed by a
further data child directory.

The nested file structure allows you to use relative file paths. The knittable
documents can call analysis-1.R with the relative path analysis/analysis-1.R.

In addition to the main files and sub-directories in example-project, you will
notice files called README.md and example-project.Rproj. We’ll discuss the
example-project.Rproj file in the next section. The README.md file is a hu-
man readable overview of all the files in the project. It should briefly describe
the project including things like its title, author(s), topic, any copyright in-
formation, and so on. It should also indicate how the folders in the project
are organized and give instructions for how to reproduce the project. The
README file should be in the main project folder—in our example this is

74 4 Getting Started with File Management

FIGURE 4.2: An Example RStudio Project Menu

called example-project—so that it is easy to find. If you are storing your project
as a GitHub repository (see Chapter 5) and the file is called README, its
contents will automatically be displayed on the repository’s main page. If the
README file is written using Markdown (e.g. README.md), it will also be
properly formatted. Figure 5.2 shows an example of this.

It is good practice to dynamically include the system information for the R ses-
sion you used to create the project. To do this, you can write your README
file with R Markdown. Simply include the sessionInfo() function in a knitr
code chunk in the R Markdown document. If you knit this file immediately
after knitting your presentation document, it will record the information for
that session.

You can also dynamically include session info in a LaTeX document. To do
this, use the function in a code chunk. The code chunk should have the option
results='asis'. The code is:

toLatex(sessionInfo())

4.3 Organizing Research with RStudio Projects

If you are using RStudio, you may want to organize your files as Projects. You
can turn a normal directory into an RStudio Project by clicking on File in
the RStudio menu bar and selecting New Project…. A new window will pop

4.4 R File Manipulation Functions 75

up. Select the option Existing Directory. Find the directory you want to
turn into an RStudio Project by clicking on the Browse button. Finally, select
Create Project. You will also notice in the Create Project pop-up window
that you can build new project directories and create a project from a directory
already under version control (we’ll do this at the end of Chapter 5). When
you create a new project, you will see that RStudio has put a file with the
extension .Rproj into the directory, like example-project.Rproj in Figure 4.1.

Making your research project directories RStudio Projects is useful for a num-
ber of reasons:

• The project is listed in RStudio’s Project menu where it can be opened easily
(see Figure 4.2).

• When you open the project in RStudio, it automatically sets the working
directory to the project’s directory and can load the source code files you
were last working on.

• You can set project specific options like whether PDF presentation docu-
ments should be compiled with Sweave or knitr.

• When you close the project, your R workspace and history are saved in the
project directory if you want. However, avoid saving your workspace as this
could make reproducibility harder.

• It helps you version control your files.

• You can build your Project—run the files in a specific way—with makefiles.

• It gives you an easy-to-use interface for managing the R packages that your
project depends on.

4.4 R File Manipulation Functions

R has a range of functions for handling and navigating through files. Including
these functions in your source code files allows you to more easily replicate
your actions.

getwd()

To find your current working directory use the getwd() function:

getwd()

76 4 Getting Started with File Management

[1] "/Users/cgandrud/git_repos/Rep-Res-Book/rep-res-3rd-edition"

list.files()

Use the list.files() function to see all of the files and sub-directories in
the current working directory. You can list the files in other directories too by
adding the directory path as an argument to the function.

Because my current working directory has a lot of files in it, I will shorten the
output for illustration by piping it through head().

library(magrittr)
list.files() %>% head()

[1] "_book"
[2] "_bookdown_files"
[3] "_bookdown.yml"
[4] "_output.yml"
[5] "01-author.Rmd"
[6] "01-stylistic-conventions.Rmd"

setwd()

The setwd() function is the base R way to set the current working directory.
For example, if we are on a Mac or other Unix-like computer, we can set the
working directory to the analysis directory in our Example Project (see Figure
4.1) like this:

setwd("/example-project/analysis/")

Now R will automatically look in the analysis folder for files and will save new
files into this folder, unless we explicitly tell it to do otherwise.

When working with a knittable document, setting the working directory once
in a code chunk changes the working directory for all subsequent code chunks.

However . . .

here::set_here()

It is not good practice for reproducibility (and just general convenience when
using a source code file across multiple computers) to use setwd() in your R
source code. You, and anyone reproducing your work, will need to tediously
set specific file paths for each computer.

4.4 R File Manipulation Functions 77

Instead, use RStudio Projects, which automatically set the working directory
to the one with the .Rproj file. If you are not using RStudio Projects, in-
clude set_here() from the here package at the top of your source code. This
will create a file called .here in the current working directory. It functions
similarly to .Rproj to automatically flag for here what should be the current
working directory. Remember when you share your source code to also share
the .Rproj/.here file.

root.dir in knittable documents

By default, the root (or working) directory for all of the code chunks in a
knittable document is the directory where this document is located. You can
reset the directory by feeding a new file path to the root.dir option. We
can set this globally5 for all of the chunks in the document by including the
following code in the document’s first chunk.

opts_knit$set(root.dir = "/example-project/analysis")

We set the /example-project/analysis sub-directory as the root directory for
all of the chunks in our presentation document.

Note: In general it is preferable to use the knittable file’s default directory and
file paths relative to it rather than manually specifying root.dir(). Setting
an alternate root directory will make reproducibility more difficult.

dir.create()

Sometimes you may want to create a new directory. You can use the
dir.create() function to do this.6 For example, to create an example-project
file in the root C directory on a Windows computer, type:

dir.create("C:\\example-project")

file.create()

Similarly, you can create a new blank file with the file.create() function.
To add a blank R source code file called source-code.R to the example-project
directory on the C drive, use:

5See the discussion of global chunk options in Chapter 3, Section 3.3.5.
6Note: you will need the correct system permissions to be able to do this.

78 4 Getting Started with File Management

file.create("C:\\example-project\\source-code.R")

cat()

If you want to create a new file and put text into it, use the cat() (concatenate
and print) function. For example, to create a new file in the current working
directory called example-cat.md that includes the text “Reproducible Research
with R and RStudio” type:

cat("Reproducible Research with R and RStudio",
file = "example-cat.md")

In this example we created a markdown formatted file by using the .md file
extension. We could, of course, change the file extension to .R to set it as an
R source code file, .Rnw to create a knitr LaTeX file, and so on.

You can use cat() to print the contents of one or more objects to a file. Warn-
ing: the cat() function will overwrite existing files with the new contents. To
add the text to existing files, use the append = TRUE argument.

cat("More Text", file = "example-cat.md", append = TRUE)

unlink()

You can use the unlink function to delete files and directories.

unlink("C:\\example-project\\source-code.R")

Warning: the unlink() function permanently deletes files, so be very careful
using it.

file.rename()

You can use file.rename() to, obviously, rename a file. It can also be used
to move a file from one directory to another. For example, imagine that we
want to move the example-cat.md file from the directory example-project to
one called markdown-files that we already created.7

7The file.rename() function won’t create new directories. To move a file to a new
directory, you will need to create the directory first with dir.create().

4.5 Unix-like Shell Commands for File Management 79

file.rename(from = "C:\\example-project\\example-cat.md",
to = "C:\\markdown-files\\example-cat.md")

file.copy()

file.rename() fully moves a file from one directory to another. To copy the
file to another directory, use the file.copy() function. It has the same syntax
as file.rename():

file.copy(from = "C:\\example-project\\example-cat.md",
to = "C:\\markdown-files\\example-cat.md")

4.5 Unix-like Shell Commands for File Management

Though this book is mostly focused on using R for reproducible research, it
can be useful to use a Unix-like shell program to manipulate files in large
projects. Unix-like shell programs, including Bash on Linux (and Mac before
macOS Catalina), Zsh on Mac (from macOS Catalina onwards), and Windows
PowerShell, give you type-able commands to interact with your computer’s
operating system.8 We will especially return to shell commands in the next
chapter when we discuss Git version control and makefiles for collecting data
in Chapter 6, as well as the command-line program9 Pandoc in Chapter 12.
We don’t have enough space to fully introduce shell programs or even all of
the commands for manipulating files. We are just going to cover some of the
basic and most useful commands for file management. For good introductions
for Unix and macOS computers, see William E. Shotts Jr.’s (2012) book on
the Linux command-line. For Windows users, Microsoft maintains a tutorial
on Windows PowerShell at http://technet.microsoft.com/en-us/libra
ry/hh848793. The commands discussed in this chapter should work in both
Unix-like shells and Windows PowerShell.

It’s important at this point to highlight a key difference between R and Unix-
like shell syntax. Shell command arguments don’t have parentheses. For ex-

8You can access Bash via the Terminal program on macOS and Linux computers. It is
the default shell on Mac (before macOS Catalina) and Linux, so it loads automatically when
you open the Terminal. Windows PowerShell comes installed with Windows.

9A command-line program is just a program you run from a shell.

http://technet.microsoft.com/en-us/library/hh848793
http://technet.microsoft.com/en-us/library/hh848793

80 4 Getting Started with File Management

ample, if I want to change my working directory to my Mac Desktop in a shell
using the cd command, I type:10

cd /Users/cgandrud/Desktop

In this example cgandrud is my user name.

cd

As we just saw, use the cd (change directory) command to change the working
directory in the shell. Here is an example of changing the directory in Windows
PowerShell to C:/:

cd C:/

If you are in a child directory and want to change the working directory to
the previous working directory you were in, type:

cd -

If, for example, our current working directory is /User/Me/Desktop and we
typed cd followed by a minus sign (cd -), then the working directory would
change to /User/Me. Note this will not work in PowerShell.

pwd

To find your current working directory, use the pwd command (present working
directory). This is essentially the same as R’s getwd() function.

pwd

ls

The ls (list) command works very similarly to R’s list.files() function. It
shows you what is in the current working directory.

Again, I have a lot of files in my working directory, so I will shorten the output
for this example by piping it through the command line’s head command. The
command line pipe is not %>%, as in R, but instead |.

10Many shell code examples in other sources include the shell prompt, like the $ in Bash,
or > in PowerShell. These are like R’s > prompt. I don’t include the prompt in code examples
in this book because you don’t type them.

4.5 Unix-like Shell Commands for File Management 81

ls | head

01-author.Rmd
01-stylistic-conventions.Rmd
02-additional-resources.Rmd
03-introduction.Rmd
04-getting-started.Rmd
05-start-R.Rmd
06-file-management.Rmd
07-storage.Rmd
08-gather.Rmd
09-clean.Rmd

As we saw earlier, R also has an ls command. R’s ls() function lists items
in the R workspace. The shell’s ls command lists files and directories in the
working directory.

mkdir

Use mkdir to create a new directory. For example, if I wanted to create a
sub-directory of my Linux root directory called new-directory I would type:

mkdir /new-directory

echo

There are a number of ways to create new files in Unix-like shells. One of
the simplest is the echo command. This command prints its argument to the
Terminal. For example:

echo Reproducible Research with R and RStudio

Reproducible Research with R and RStudio

If you add the greater-than symbol (>) after the text you want to print and
then a file name, echo will create the file (if it doesn’t already exist) in the
current working directory and then print the text into the file.

echo Reproducible Research with R and RStudio > example-echo.md

Using only one greater-than sign will completely erase the example-echo.md
file’s contents and replace them with Reproducible Research with R and
RStudio. To append the text at the end of an existing file, use two greater-than
signs (>>).

82 4 Getting Started with File Management

echo More text. >> example-echo.md

There is also a cat shell command. It works slightly differently than the R
version of the command and I don’t cover it here.

rm

The command rm removes (deletes) files or directories.

rm example-echo.md

Add the d (directory) option to delete a directory. Note that options are like
arguments in an R function. For example:

rm -d example-dir

Again, be careful when using this command, because it permanently deletes
the files or directories.

As we saw in Chapter 3, R also has an rm() function. It is different because
it removes objects from your R workspace rather than files from your working
directory.

mv

To move a file from one directory to another from a shell, use the mv (move)
command. For example, to move the file example-echo.md from example-
project to markdown-files, use the following code and imagine both directories
are in the root directory:11

mv /example-project/example-echo.md/markdown-files

Note that the markdown-files directory must already exist. If it does not exist,
the file will just be renamed. This is similar to the R function file.rename().

11If they were not in the root directory, we would not place a forward slash at the begin-
ning.

4.6 File Navigation in RStudio 83

cp

The mv command completely moves a file from one directory to another. To
copy a version of the file to a new directory use the cp command. The syntax
is similar to mv:

cp /example-project/ExampleEcho.md /markdown-files

system() (R function)

You can run shell commands from within R using R’s system() function. For
example, to run the echo command from within R type:

system("echo Text to Add > ExampleEcho.md")

4.6 File Navigation in RStudio

The RStudio Files pane allows us to navigate our file tree and do some basic
file manipulations. Figure 4.3 shows us what this pane looks like. The pane
allows us to navigate to specific files and folders and delete and rename files.
To select a folder as the working directory, tick the dialog box next to the file.
Then click the More button and select Set As Working Directory. Under
the More button, you will also find options to Move and Copy files (see Figure
4.4).

The Files pane is a Graphical User Interface (GUI), so our actions in the Files
pane are not recorded, as such are not as easily reproducible as the commands
we learned earlier in this chapter.

Chapter summary

In this chapter we’ve learned how to organize our research files to enable dy-
namic replication. This included not only how they can be ordered in a com-
puter’s file system, but also the file path naming conventions—the addresses—
that computers use to locate files. Once we know how these addresses work,
we can use R and shell commands to refer to and manipulate our files. This
skill is particularly useful because it allows us to place code in text-based files
to manipulate our project files in highly reproducible ways. In the next few

84 4 Getting Started with File Management

FIGURE 4.3: The RStudio Files Pane

FIGURE 4.4: More Functionality in the RStudio Files Pane

chapters, we will put these skills into practice. We will learn how to store our
files and create data files in reproducible ways.

Part II

Data Gathering and
Storage

5
Storing, Collaborating, Accessing Files, and
Versioning

In addition to being well organized, your research files need to be accessible for
other researchers to be able to reproduce your findings. A useful way to make
your files accessible is to store them on a cloud storage service1 (Howe, 2012).
This chapter describes in detail two different cloud storage services, Dropbox
and GitHub, that you can use to make your research files easily accessible to
others. Not only do these services enable others to reproduce your research,
but they also have a number of benefits for your research workflow. These are
certainly not the only services for remote research file storage, but discussing
them does cover many common concerns of other services.

Researchers often face a number of data management issues that, beyond mak-
ing their research difficult to reproduce, can make doing the initial research
difficult.

First, there is the problem of storing data so that it is protected against
computer failure—virus infections, spilling coffee on your laptop, and so on.
Storing data locally on your computer or on a flash drive is generally more
prone to loss than on remote servers in the cloud.

Second, we may work on a project with different computers and mobile devices.
For example, we may use a computer at work to run computationally intensive
analysis, while editing our presentation document on a tablet, while riding the
train to the office. So, we need to be able to access our files from multiple
devices in different locations. We often need a way for our collaborators to
access and edit research files as well.

Finally, we almost never create a data set or write a paper perfectly all at
once. We may make changes and then realize that we liked an earlier version,
or parts of an earlier version better. This is a particularly important issue in
data management where we may transform our data in unintended ways and
want to go back to earlier versions. Also, when working on a collaborative
project, one of the authors may accidentally delete something in a file that
another author needed. To deal with these issues, we need to store our data
in a system that has version control. Version control systems keep track of

1These services store your data on remote servers.

87

88 5 Storing, Collaborating, Accessing Files, and Versioning

changes we make to our files and allows us to access previous versions if we
want to.

You can solve all of these problems in a couple of different ways using free or
low cost cloud-based storage formats. In this chapter, we will learn how to use
Dropbox and Git/GitHub for research files:

• storage,

• accessing,

• collaboration,

• version control.

5.1 Saving Data in Reproducible Formats

Before getting into the details of cloud-based data storage for all of our re-
search files, let’s consider what type of formats you should actually save your
data in. A key issue for reproducibility is that others are able to not only get
hold of the exact data you used in your analysis, but also be able to under-
stand and use the data now and in the future. Some file formats make this
easier than others.

In general, for small to moderately sized data sets2 plain-text formats like
comma-separated values (.csv) or tab-separated values3 (.tsv) are good ways
to store your data. These formats store a data set as a text file. A row in
the data set is a line in the text file. Data is separated into columns with
commas or tabs, respectively. These formats are not dependent on a specific
program. Any program that can open text files can open them, including
a wide variety of statistical programs other than R as well as spreadsheet
programs like Microsoft Excel. Using text file formats helps future-proof your
research. Version control systems that track changes to text, like Git, are also
very effective version control systems for these types of files.

The write.table() function is one way to save data in plain-text formats
from R. For example, to save a data frame called data as a comma-separated-

2I don’t cover methods for storing and handling very large data sets, with
high hundreds of thousands and more observations. For information on large data
and R, not just storage, one place to look is this blog post from RDataMin-
ing: http://rdatamining.wordpress.com/2012/05/06/online-resources-for-handling-
big-data-and-parallel-computing-in-r/ (posted 6 May 2012). One popular service for
large file storage is Amazon S3 (http://aws.amazon.com/s3/).

3Sometimes this format is called tab-delimited values.

http://rdatamining.wordpress.com/2012/05/06/online-resources-for-handling-big-data-and-parallel-computing-in-r/
http://rdatamining.wordpress.com/2012/05/06/online-resources-for-handling-big-data-and-parallel-computing-in-r/
http://aws.amazon.com/s3/

5.2 Storing Your Files in the Cloud: Dropbox 89

value (CSV) file called main-data.csv in our example data directory (see Figure
4.1):

write.table(Data, "/example-project/data/main-data.csv",
sep = ",",
row.names = FALSE)

row.names = FALSE prevents R from including the row names in the output
file.4 The sep = "," argument specifies that we want to use commas to sepa-
rate values into columns. For CSV files, you can use a modified version of this
command called write.csv(). This function makes it so that you don’t have
to write sep = ",".5

If you want to save your data with values separated by tabs, rather than
commas, set the argument sep = "\t" and set the file extension to .tsv.

R is able to save data in a wide variety of other file formats, mostly through
the foreign or rio (hong Chan and Leeper, 2018) packages (see Chapter 6).
These formats may be less future-proof than simple text-formatted data files.

One advantage of many other statistical program file formats is that they
include not only the underlying data, but also other information like variable
descriptions. If you are using plain-text files to store your data, you will need
to include a separate file, preferably in the same directory as the data file
describing the variables and their sources. In Chapter 9 we will look at how
to automate the creation of variable description files.

5.2 Storing Your Files in the Cloud: Dropbox

In this book we’ll cover two (largely) free cloud storage services that allow you
to store, access, collaborate on, and version control your research files. These
services are Dropbox and GitHub.6 Though they both meet our basic storage
needs, they do so in different ways and require different levels of effort to set
up and maintain.

These two services are certainly not the only way to make your research files

4Frequently the row names are just the row numbers which may have no substantive
meaning.

5write.csv() is a ‘wrapper’ for write.table().
6Dropbox provides a minimum amount of storage for free, above which they charge a

fee. GitHub lets you create publicly accessible repositories—kind of like project folders—for
free, but they charge for private repositories.

90 5 Storing, Collaborating, Accessing Files, and Versioning

available. Research-oriented services include Zenodo,7 the Dataverse Project,8
figshare,9 and RunMyCode.10 These services include good built-in citation sys-
tems, unlike Dropbox and GitHub. They also aim to provide persistent URLs
for your files. This helps avoid the ‘link rot’ that threatens reproducibility,
i.e. a hosting service changes its URL structure breaking existing links. These
services may be a very good place to store research files once the research
is completed or close to completion. Many journals now require replication
files be uploaded to these sites. However, these sites’ ability to store, access,
collaborate on, and version control files during the main part of the research
process is mixed. Services like Dropbox and GitHub are very capable of being
part of the research workflow from the beginning.

Zenodo and GitHub have excellent integration, allowing you to actively de-
velop a research project on GitHub then persist it on Zenodo. For details, see
https://guides.github.com/activities/citable-code/.

The easiest types of cloud storage for your research are services like Drop-
box11 and Google Drive.12 These services not only store your data in the
cloud, but also provide ways to share files. They even include basic version
control capabilities. I’m going to focus on Dropbox because it currently offers
a complete set of features that allow you to store, version, collaborate, and
access your data. I will focus on how to use Dropbox on a computer. Some
Dropbox functionality may be different on mobile devices.

5.2.1 Storage

When you sign up for Dropbox and install the program,13 it creates a direc-
tory on your computer’s hard drive. When you place new files and folders in
this directory and make changes to them, Dropbox automatically syncs the
directory with a similar folder on a cloud-based server. Typically when you
sign up for the service, you’ll receive a limited amount of storage space for free,
usually a few gigabytes. This is probably enough storage space for a number
of text file-based research projects with smaller data sets.

7https://zenodo.org/
8https://dataverse.org/
9http://figshare.com/

10http://www.runmycode.org/
11http://www.dropbox.com/
12https://drive.google.com/
13See https://www.dropbox.com/downloading for downloading and installation instruc-

tions.

https://guides.github.com/activities/citable-code/
https://zenodo.org/
https://dataverse.org/
http://figshare.com/
http://www.runmycode.org/
http://www.dropbox.com/
https://drive.google.com/
https://www.dropbox.com/downloading

5.2 Storing Your Files in the Cloud: Dropbox 91

5.2.2 Accessing data

All files stored on Dropbox have a URL address through which they can be
accessed from a computer connected to the internet. To access a Dropbox file
or directory’s URL so that it can be downloaded, right-click on the file icon in
your Dropbox folder on your computer. Then click Copy Dropbox Link. This
copies the URL into your clipboard.

You need to make one small change to the link so that it can be programmati-
cally downloaded. By default, the link will point to the Dropbox website page
for the file/directory. To be able to programmatically download it, you need
to change the last 0 in the URL to a 1. For example, change:

https://www.dropbox.com/s/1xapw69efofpg3b/public.fin.msm.model.
csv?dl=0

to

https://www.dropbox.com/s/1xapw69efofpg3b/public.fin.msm.model.
csv?dl=1

We changed the download (dl) option from false (dl=0) to true (dl=1). Now
you can use the link to download data in your R source code, for example.

Once you have the URL, you can load the file directly into R using the
import() function from the rio package. import() works for many differ-
ent data formats and is generally more robust than read.table(). Use the
source_url() function in the devtools package (Wickham et al., 2019c) to
download and run R source code files (see Chapter 8).

Let’s download data directly into R from Dropbox. The data set’s
URL is: https://www.dropbox.com/s/1xapw69efofpg3b/public.fin.msm
.model.csv?dl=1.14

Download data on financial regulators stored on Dropbox

Load rio
library(rio)

Place the URL into the object fin_url
fin_url <- "https://bit.ly/2xlQ2j5"

Download data
fin_regulator <- import(fin_url, format = "csv")

14This data is from (Gandrud, 2013b). I’ve shortened the URL using Bitly (https://bi
tly.com/) so that it will fit on the page.

https://www.dropbox.com/s/1xapw69efofpg3b/public.fin.msm.model.csv?dl=1
https://www.dropbox.com/s/1xapw69efofpg3b/public.fin.msm.model.csv?dl=1
https://bitly.com/
https://bitly.com/

92 5 Storing, Collaborating, Accessing Files, and Versioning

Show variables in fin_regulator
names(fin_regulator)

[1] "idn" "country" "year" "reg_4state"

The argument format = "csv" tells import() what format the file is in. This
isn’t necessary if the file path has an informative file extension, e.g. it ends
with .csv.

5.2.3 Collaboration

Though others can easily access your data and files with Dropbox URL links,
you cannot save files through the link. You must save files in the Dropbox
folder on your computer or upload them through the website. If you would
like collaborators to be able to modify the research files, you will need to
‘share’ the Dropbox folder with them. Once you create a Dropbox folder, you
can share it with your collaborators by right-clicking on the folder’s name.
Then select Share. Enter your collaborator’s email address when prompted
and select Can Edit from the permissions dropdown menu. They will be sent
an email that will allow them to accept the share request and, if they don’t
already have an account, they can sign up for Dropbox.

5.2.4 Version control

Dropbox has a simple version control system. Every time you save a document
a new version is created on Dropbox. To view a previous version, navigate to
the file on the Dropbox website. Then click on the file. In the upper-right
corner, there is a menu where you can select Version history. This will take
you to a page listing previous versions of the file, who created the version, and
when it was created. A new version of a file is created every time you save a
file and it is synced to the Dropbox cloud service.

Note that with a free Dropbox account, previous versions of a file are only
stored for 30 days. You need a paid account to save previous versions for
more than 30 days.15

15For more details, see https://www.dropbox.com/en/help/11.

https://www.dropbox.com/en/help/11

5.3 Storing Your Files in the Cloud: GitHub 93

5.3 Storing Your Files in the Cloud: GitHub

Dropbox minimally meets our four basic criteria for reproducible data storage.
It is easy to set up and use. GitHub meets the criteria and more, especially
when it comes to version control. It is, however, less straightforward at first.
In this section, we will learn enough of the basics to get you started using
GitHub to store, access, collaborate on, and version control your research.

GitHub is an interface and cloud hosting service built on top of the Git ver-
sion control system.16 Git does the version control. GitHub stores the data
remotely, as well as provides a number of other features, some of which we
look at below. GitHub was not explicitly designed to host research projects or
even data. It was designed to host “socially coded” computer programs—in
what Git calls “repositories”, repos for short—by making it easy for a number
of collaborators to work together to build computer programs. This seems
very far from reproducible research.

Remember that as reproducible researchers, we are building projects out of in-
terconnected text files. In important ways, this is exactly the same as building
a computer program. Computer programs are also basically large collections of
interconnected text files. Like computer programmers, we need ways to store,
version control, access, and collaborate on our text files. Because GitHub is
very actively used by people with similar needs (who are also really good pro-
grammers), the interface offers many highly developed and robust features for
reproducible researchers.

GitHub’s extensive features and heart in the computer programming commu-
nity means that it takes a longer time than Dropbox for novice users to set up
and become familiar with. So we need good reasons to want to invest the time
needed to learn GitHub. Here is a list of GitHub’s advantages over Dropbox
for reproducible research that will hopefully convince you to get started using
it:17

Storage and access

• Dropbox creates folders stored in the cloud which you can share with other
people. GitHub makes your projects accessible on a fully featured project
website (see Figure 5.2). An example feature is that it automatically renders

16I used Git version 2.20.1 for this book.
17Because many of these features apply to any service that relies on Git, much of this

list of advantages also applies to alternative Git cloud storage services such as Bitbucket
(https://bitbucket.org/).

https://bitbucket.org/

94 5 Storing, Collaborating, Accessing Files, and Versioning

Markdown files called README.md18 in a GitHub directory on the repos-
itory’s website. This makes it easy for independent researchers to find the
file and read it.

• GitHub can create and host a website for your research project that you
could use to present the results, not just the replication files.

• Its close integration with Zenodo allows you to easily make your full repli-
cation material persistently accessible and citable.

Collaboration

• Dropbox allows multiple people to share files and change them. GitHub does
this and more.

• GitHub keeps meticulous records of who contributed what to a project.

• Each GitHub repository has an “Issues” area where you can note issues and
discuss them with your collaborators. Basically, this is an interactive to-do
list for your research project. It also stores the issues so you have a full
record.

• Each repository can also host a wiki that, for example, could explain in
detail how certain aspects of a research project were done.

• Anyone can suggest changes to files in a public repository. These changes can
be accepted or declined by the project’s authors. The changes are recorded
by the Git version control system. This could be especially useful if an
independent researcher notices an error.

Version control

• Dropbox’s version control system only lets you see file names, the times
they were created, who created them, and revert back to specific versions.
Git tracks every change you make. The GitHub website and GUI programs
for Mac and Windows provide nice interfaces for examining specific changes
in text files.

• Dropbox creates a new version every time you save a file. This can make it
difficult to actually find the version you want as the versions quickly multiply.
Git’s version control system only creates a new version when you tell it to.

• All files in Dropbox are version controlled. Git allows you to ignore specific
files. This is helpful if you have large binary files (i.e. not text files) that

18You can use a variety of other markup languages as well. See https://GitHub.com/Git
Hub/markup.

https://GitHub.com/GitHub/markup
https://GitHub.com/GitHub/markup

5.3 Storing Your Files in the Cloud: GitHub 95

you do not want to version control because doing so will use up considerable
storage space.

• Unless you have a paid account, previous file versions in Dropbox disappear
after 30 days. GitHub stores previous versions indefinitely for all account
types.

• Dropbox does not merge conflicting versions of a file together. This can be
annoying when you are collaborating on a project and more than one author
is making changes to documents at the same time. Git identifies conflicts
and lets you reconcile them.

• Git is directly integrated into RStudio Projects.19

FIGURE 5.1: A Basic Git Repository with Hidden .git Folder Revealed

5.3.1 Setting up GitHub: Basic

There are at least three ways to use Git/GitHub on your computer. You can
use the command-line version of Git. It’s available for Mac and Linux (in
the Terminal) as well as Windows through Git Bash.20 You can also use the
Graphical User Interface GitHub program. Currently, it’s only available for
Windows and Mac. RStudio also has GUI-style Git functionality for RStudio
Projects. In this section, I focus on how to use the command-line version,
because it will help you understand what the GUI versions are doing and
will allow you to better explore more advanced Git features not covered in
this book. In the next section, I will mention how to use Git with RStudio
Projects.

19RStudio also supports the Subversion version control system, but I don’t cover that
here.

20The interface for Git Bash looks a lot like the Terminal or Windows PowerShell.

96 5 Storing, Collaborating, Accessing Files, and Versioning

The first thing to do to set up Git and GitHub is go to the GitHub website
(https://github.com/) and sign up for an account. Second, you should go
to the following website for instructions on setting up GitHub: https://help
.github.com/articles/set-up-git/. The instructions on that website are
very comprehensive, so I’ll direct you there for the full setup information. Note
that installing the GUI version of GitHub also installs Git and, on Windows,
Git Bash.

5.3.2 Version control with Git

Git is primarily a version control system, so we will start our discussion of
how to use it by looking at how to version your repositories.

Setting up Git repositories locally

You can set up a Git repo on your computer with the command-line.21 I
keep my repositories in a folder called git_repositories,22 though you can use
Git with almost any directory you like. The git_repositories directory has
the root folder as its parent. Imagine that we want to set up a repository in
this directory for a project called example_project. Initially it will have one
README file called README.md. To do this, we would first type into the
Terminal for Mac and Linux computers:

Make new directory 'example-project'
mkdir /git_repositories/example-project

Change to directory 'example-project'
cd /git_repositories/example-project

Create new file README.md
echo "# An Example Repository" > README.md

So far, we have only made the new directory and set it as our working direc-
tory (see Chapter 4). All of the examples in this section assume your current
working directory is set to the repo. Then, with the echo shell command we
created a new file named README.md that includes the text # An Example
Repository. Note that the code is basically the same in Windows PowerShell

21Much of the discussion of the command-line in this section is inspired by Nick Fa-
rina’s blog post on Git (see http://nfarina.com/post/9868516270/git-is-simpler, posted
7 September 2012).

22To follow along with this code, you will first need to create a folder called git_repositories
in your root directory. Note also that throughout this section I use Unix file path conven-
tions.

https://github.com/
https://help.github.com/articles/set-up-git/
https://help.github.com/articles/set-up-git/
http://nfarina.com/post/9868516270/git-is-simpler

5.3 Storing Your Files in the Cloud: GitHub 97

or Git Bash. Also, you don’t have to do these steps in the command-line. You
could just create the new folders and files the same way that you normally do
with your mouse in your GUI operating system.

Now that we have a directory with a file, we can tell Git that we want to
treat the directory example-project as a repository and that we want to track
changes made to the file README.md. Use Git’s init (initialize) command
to set the directory as a repository. See Table 5.1 for the list of Git commands
covered in this chapter.23 Use Git’s add command to add a file to the Git
repository. For example,

Initialize the Git repository
git init

Add README to the repository
git add README.md

You probably noticed that you always need to put git before the command.
This tells the shell what program the command is from. When you initialize a
folder as a Git repository, a hidden folder called .git is added to the directory
(see Figure 5.1). This is where all of your changes are kept. If you want to add
all of the files in the working directory to the Git repository type:

Add all files to the repository
git add .

When we want Git to track changes made to files added to the repository
we can use the commit command. In Git language we are “committing” the
changes to the repository.

Commit changes
git commit -a -m "First Commit, created README file"

Note: the files won’t appear on GitHub yet. Later in the chapter, we will
learn how to push commits to your remote GitHub repository. The -a (all)
option commits changes made to all of the files that have been added to the
repository. You can include a message with the commit using the -m option
like: "First Commit, created README file". Messages help you remember
general details about individual commits. This is helpful when you want to
revert to old versions. Remember: Git only tracks changes when you commit
them.

Finally, you can use the status command for details about your repository,

23For a comprehensive guide to Git commands, see http://git-scm.com/.

http://git-scm.com/

98 5 Storing, Collaborating, Accessing Files, and Versioning

including uncommitted changes. Generally it’s a good idea to use the -s (short)
option, so that the output is more readable.

Display status
git status -s

FIGURE 5.2: Part of this Book’s GitHub Repository Webpage

Checkout

It is useful to step back for a second and try to understand what Git is doing
when you commit your changes. In the hidden .git, folder Git is saving all of the
information in compressed form from each of your commits into a sub-folder
called objects. Commit objects24 are everything from a particular commit. I
mean everything. If you delete all of the files in your repository (except for the
.git folder), you can completely recover all of the files from your most recent
commit with the checkout command:

24Other Git objects include trees (sort of like directories), tags (bookmarks for important
points in a repo’s history), and blobs (individual files).

5.3 Storing Your Files in the Cloud: GitHub 99

TABLE 5.1: A Selection of Git Commands

Command Description

add Add a file to a Git repository.

branch Create and delete branches.

checkout Checkout a branch.

clone Clone a repository (for example, the remote
GitHub version) into the current working
directory.

commit Commit changes to a Git repository.

fetch Download objects from the remote (or an-
other) repository.

.gitignore Not a Git command, but a file you can add to
your repository to specify what files/file types
Git should ignore.

init Initialize a Git repository.

log Show a repo’s commit history.

merge Merge two or more commits/branches
together.

pull fetch data from a remote repository and try
to merge it with your commits.

push Add committed changes to a remote Git repos-
itory, i.e. GitHub.

remote add Add a new remote repository to an existing
project.

rm Remove files from Git version tracking.

status Show the status of a Git repository including
uncommitted changes made to files.

tag Bookmark particularly significant commits.
Note: when you use these commands in the shell, you will need to precede them with git so the
shell knows what program they are from.

100 5 Storing, Collaborating, Accessing Files, and Versioning

Checkout latest
commit git checkout -- .

Note that there is a space between the two dashed lines and the period. You
can also change to any other commit or any committed version of a particular
file with checkout. Simply replace the -- with the commit reference. Note
that the period at the end is still very important to include after the commit
reference. The commit reference is easy to find and copy from a repository’s
GitHub webpage (see below for more information on how to create a GitHub
webpage).25 For an example of a GitHub repo webpage, see Figure 5.2. Click
on the link that lists the number of repo commits on the left-hand side of
the repo’s webpage. This will show you all of the commits. A portion of this
book’s commit history is shown in Figure 5.3. By clicking on the code icon
(<>), you can see what the files at any commit looked like. Next to this
button is another with a series of numbers and letters. This is the commit’s
SHA-1 hash.26 For our purposes, it is the commit’s reference number. Click
on the button to the left of the SHA to copy it. You can then paste it as an
argument to your command. This will revert you to that particular commit.
Also include the file name if you want to revert to a particular version of a
particular file.

FIGURE 5.3: Part of this Book’s GitHub Repository Commit History

Tags

SHA-1 hashes are a bit cumbersome to use as references. What was the hash
number for that one commit? To solve this problem you can add bookmarks,
known as “tags”, to particularly important commits. Imagine we just commit-

25You can also search your commit history and roll back to a previous commit using only
the command-line. To see the commit history, use the log command (more details at ht
tp://git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History). When a repo has
many commits, this can be a very tedious command to use, so I highly recommend the GUI
version of GitHub or the repo’s GitHub website.

26Secure Hash Algorithm. This is a unique identifier for each commit.

http://git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History

5.3 Storing Your Files in the Cloud: GitHub 101

ted our first full draft of a project. We want to tag it as version 0.1, i.e. “v0.1”.
To do this, use Git’s tag command:

Tag most recent commit v0.1
git tag -a v0.1 -m "First draft"

The -a option adds the tag v0.1 and -m lets us add a message. Now we can
check out this particular commit by using its tag, i.e.:

Checkout v0.1
git checkout v0.1

This will create a new “branch” with a generic name (detached from v0.1)
where you can make changes and commit them. If you plan to check out a
previous tagged version and make changes to it, it is a good idea to specifically
name the branch using the -b argument.27 For example, to give it the name
v0.1_branch type:

Checkout v0.1 as v0.1_branch
git checkout v0.1 -b v0.1_branch

What is a branch?

Branches

Sometimes you may want to work on an alternative version of your project and
then merge changes made to this version back into the main one. For example,
the main version could be the most stable current copy of your research, while
the alternative version could be a place where you test out new ideas. Git
allows you to create a new branch (alternative version of the repo) which can
be merged back into the master (main) branch. To see what branch you are
using, type:

Show git branch
git branch

Version3
* master
v3janMinor

27If you don’t, then the new branch will have a “detached head” which will create problems
using the branch in the future.

102 5 Storing, Collaborating, Accessing Files, and Versioning

To create a new branch, use the branch command. For example, to create a
new branch called test:

Create test branch
git branch test

You can now use checkout to switch to this branch.28 Here is a shortcut for
creating and checking out the branch:

Create and checkout test branch
git checkout -b test

The -b (branch) option for checkout creates the new test branch before switch-
ing to it.

To merge changes you commit in the test branch to the master, add and commit
your changes, checkout the master branch, then use the merge command.29

Add files
git add .

Commit changes to test branch
git commit -a -m "commit changes to test"

Checkout master branch
git checkout master

Merge master and test branches
git merge test

Note, when you merge a branch, you may encounter conflicts in the files that
make it impossible to smoothly merge the files together. Git will tell you what
and where these are; you then need to decide what to keep and what to delete.

Having Git ignore files

There may be files in your repository that you do not want to keep under
version control. Maybe this is because they are very large files or cached files
from knitr or other files that are byproducts of compiling a LaTeX document
(see Chapter 8). You also want to ignore files that contain private information.

28To delete the test branch, use the -d argument, i.e. git branch -d Test.
29Any uncommitted changes are merged with a branch when it is checked out.

5.3 Storing Your Files in the Cloud: GitHub 103

Make sure to never include private information (e.g. passwords or con-
fidential data) in your Git history. Once they are committed, it will be very
difficult to definitively remove them. Once they are on GitHub, they will be
publicly accessible.

To have Git ignore particular files, create a file called .gitignore.30 You can
either put this file in the repository’s parent directory to create a .gitignore
file for the whole repository or in a sub-directory to ignore files in that sub-
directory. In the .gitignore file, add ignore rules by including the names of the
files that you want to have Git ignore. For example, GitHub has a .gitignore
file that is useful for ignoring files31 that we often don’t want to commit to
our git history when using R and R Markdown:

History files
.Rhistory
.Rapp.history

Session Data files
.RData

Example code in package build process
*-Ex.R

Output files from R CMD build
/*.tar.gz

Output files from R CMD check
/*.Rcheck/

RStudio files
.Rproj.user/

produced vignettes
vignettes/*.html
vignettes/*.pdf

OAuth2 token
.httr-oauth

knitr and R markdown default cache directories
/*_cache/
/cache/

30Note that like .git, .gitignore files are hidden.
31From: https://github.com/github/gitignore/blob/master/R.gitignore as of 26 De-

cember 2018.

https://github.com/github/gitignore/blob/master/R.gitignore

104 5 Storing, Collaborating, Accessing Files, and Versioning

Temporary files created by R markdown
*.utf8.md
*.knit.md

The asterisk (*) is a “wildcard” and stands for any character. In other words, it
tells Git to look for files with any name that end with a specified file extension.
This is faster than writing out the full name of every file you want to ignore
individually. It also makes it easy to copy the rules into new repos. For example,
you’ll notice the *-Ex.R and /*_cache/ rules. These tell Git to ignore all of
the files with a name ending in -Ex.R and all files in subdirectories with a
name ending in _cache.

Git will not ignore files that have already been committed to a repository. To
ignore these files, you will first need to remove them from Git with Git’s rm
(remove) command. If you wanted to remove a file called example-project.tex
from version tracking type:

Remove example-project.tex from Git version tracking
git rm --cached example-project.tex

Using the –cached argument tells Git not to track the file, but not delete it.

For more information on .gitignore files, see GitHub’s reference page on the
topic at: https://help.github.com/articles/ignoring-files/.

5.3.3 Remote storage on GitHub

So far we’ve been using repos stored locally. Let’s now look at how to also
store a repository remotely on GitHub. You can either create a new repository
on GitHub and download (clone) it to your computer or upload (push) an
existing repository to a new GitHub remote repo. In both cases, you need to
create a new repository on GitHub.

To create a new repository on GitHub, go to your main GitHub account web-
page and click the New repository button. On the next page that appears,
give the repository a name, brief description, and choose whether to make it
public or private. If you want to store an existing repository on GitHub, give
it the same name as the one that already exists on your computer. If you
already have files in your local repository do not check the boxes for creating
README.md, LICENSE, and .gitignore files. When you then click Create
Repository, you will be directed to the repository’s GitHub webpage.32

32Before the repo has any files in it, the webpage will include instructions for how to set
it up on your computer.

https://help.github.com/articles/ignoring-files/

5.3 Storing Your Files in the Cloud: GitHub 105

Clone a new remote repository

If you are working with a new repository and do not have an existing version
on your computer, you need to “clone” the GitHub repo to your computer.
The repo’s GitHub page contains a button called Clone in Desktop. Clicking
this will open GUI GitHub (if it is installed) and prompt you to specify what
directory on your computer you would like to clone the repository into. You
can also use the clone command in the shell. Imagine that the URL for a repo
called Example Project is https://GitHub.com/USER/example-project.git.
To clone it into the /git_repositories directory type:33

Change working directory
cd /git_repositories/

Clone example-project
git clone https://GitHub.com/USER/example-project.git

Push an existing repository to a new GitHub repo

If you already have a repository with files in it on your computer and
you want to store them remotely in a new GitHub repo, you need
to add the remote repository and push your files to it. Type Git’s
remote add command. For example, if your repository’s GitHub URL is
https://github.com/USER/example-project.git, then type:

Change working directory to existing local repo
cd /git_repositories/example-project

Add a remote (GitHub) repository to an existing repo
git remote add origin https://github.com/USER/example-project.git

This will tell your local repository where the remote one is. Finally, push the
repository to GitHub:

Push local repository to GitHub for the first time
git push -u origin master

The -u (upstream tracking) option adds a tracking reference for the upstream
(GitHub) repository branches.

33If you are on the repo’s webpage the URL to copy is under HTTPS clone URL.

106 5 Storing, Collaborating, Accessing Files, and Versioning

Pushing commits to a GitHub repo

Once you have your local repository connected to GitHub, you can add new
commits with the push command. For example, if your current working direc-
tory is the Git repo you want to push and you have already added/committed
the changes you want to include in the remote repo, type:

Add changes to the GitHub remote master branch
git push origin master

The origin is the remotely stored repository on GitHub and master is the
master branch. You can change this to another branch if you’d like. If you
have not set up password caching34 you will now be prompted to give your
GitHub username and password.

You can also push your tags to GitHub. To push all of the tags to GitHub,
type:

git push --tags

Now on the repo’s GitHub page, there will be a Tags section that will allow
you to view and download the files in each tagged version of the repository.

5.3.4 Accessing on GitHub

Downloading into R

In general, the process of downloading data directly into R is similar to
what we saw earlier for loading data from Dropbox Public folders. We can
use the import() function. First, we need to find our plain-text data file’s
raw URL. To do this, go to your repository’s GitHub site, navigate to the
file you want to load, and click the Raw button on the right just above
the file preview. I have data in comma-separated values format stored in a
GitHub repository.35 The URL for the raw (plain-text) version of the data
is https://raw.githubusercontent.com/christophergandrud/Dispropor
tionality_Data/master/Disproportionality.csv.36

34See https://help.github.com/articles/set-up-git/ for more details.
35For full information about the disproportionality data set, please see http://christop

hergandrud.github.io/Disproportionality_Data/.
36It has been shortened with Bitly in the example.

https://raw.githubusercontent.com/christophergandrud/Disproportionality_Data/master/Disproportionality.csv
https://raw.githubusercontent.com/christophergandrud/Disproportionality_Data/master/Disproportionality.csv
https://help.github.com/articles/set-up-git/
http://christophergandrud.github.io/Disproportionality_Data/
http://christophergandrud.github.io/Disproportionality_Data/

5.3 Storing Your Files in the Cloud: GitHub 107

Place shortened URLinto url object
url <- "http://bit.ly/14aSjxB"

Download data
disprop_data <- rio::import(url, format = "csv")

Show variable names
names(disprop_data)

[1] "country" "iso2c"
[3] "year" "disproportionality"

import() downloaded the most recent version of the file from the master
branch.

We can actually use import() to download a particular version of a file—from
a particular Git commit—directly into R. This makes reproducing a specific
result much easier. To do this, you just need to use a file’s raw URL from a
particular commit. To find a file’s particular commit raw URL first click on
the file on GitHub’s website. Then click the History button. This will take
you to a page listing all of the file’s versions. Click on the git commit hash
button next to the version of the file that you want to use. Then click View
file and finally the Raw button to be taken to the text-only version of the
file. Copy this page’s URL address and use it with import().

For example, I have an old version of the disproportionality data. To download
it, I find this particular version of the file’s URL and use it in import():

Create object containing the file's URL
old_url <- paste0("https://raw.githubusercontent.com/",

"christophergandrud/",
"Disproportionality_Data/",
"1a59d360b36eade3b183d6336a",
"2262df4f9555d1/",
"Disproportionality.csv")

Download old disproportionality data
disprop_old <- rio::import(old_url, format = "csv")

In this example I did not shorten the URL, but instead used the paste0()
function to paste it together.37 You do not have to do this. I did it here so
that the URL would fit on the printed page.

37paste0 is the same as paste, but has the argument sep = "" so that white space is not
placed between the pasted elements.

108 5 Storing, Collaborating, Accessing Files, and Versioning

Viewing files

The GitHub web user interface also allows you, your collaborators (see below)
or, if the repo is public, anyone to look at text files from a web browser.
Collaborators can actually also create, modify, and commit changes in the web
user interface. This can be useful for making small changes, especially from a
mobile device without a Git installation. Anyone with a GitHub account can
suggest changes to files in a public repository on the repo’s website. Simply
click the Edit button (it looks like a pencil) above the file and make edits. If
the person making the edits is not a designated collaborator, their edits will
be sent to the repository’s owner for approval.38 This can be a useful way for
independent researchers to fix errors.

Collaboration with GitHub

Repositories can have official collaborators that can make changes to files in
the repo. Public repositories can have unlimited collaborators. Anyone with a
GitHub account can be a collaborator. To add a collaborator to a repository
you created, click on the Settings button on the repository’s website (see
Figure 5.2). Then click the Collaborators button on the left-hand side of
the page. You will be given a box to enter your collaborator’s GitHub user-
name. If your collaborator doesn’t have a GitHub account, they will have to
create a new one. Once you add someone as a collaborator, they can clone the
repository onto their computer as you did earlier and push changes.

Syncing a repository

If you and your collaborators are both making changes to the files in a repo you
might create conflicting changes, i.e. different changes to the same part of a
file. To avoid too many conflicts, it is a good idea to sync your local repository
with the remote repository before you push your commits to GitHub. Use
the pull command to sync your local and remote repository. First add and
commit your changes, then type:

git pull

If the files you are pulling conflict with your local files, you will probably want
to resolve these in the individual files and commit the changes. When there
are merge conflicts, Git adds both versions of a piece of text to the file. You
then open the file and decide which version to keep and which one to delete.
When the conflicts are resolved and changes committed, push your merged
changes up to the remote repository as we did before.

38This is called a pull request in Git terminology. See the next section for more details.

5.4 Storing Your Files in the Cloud: GitHub 109

5.3.5 Summing up the GitHub workflow

We’ve covered a lot of ground in this section. Let’s sum up the basic GitHub
workflow you will probably follow once your repo is set up.

1. Add any changes you’ve made with git add.

2. commit the changes.

3. pull your collaborators’ changes from the GitHub repo, resolve any
merge conflicts, and commit the changes.

4. push your changes to GitHub.

FIGURE 5.4: Creating RStudio Projects

FIGURE 5.5: Creating RStudio Projects in New Directories

110 5 Storing, Collaborating, Accessing Files, and Versioning

5.4 RStudio and GitHub

When you open a Project with a Git repository in RStudio, you will see a
new Git tab next to Environment, History, and Connections (see Figure 5.6).
From here, you can do many of the things we covered in the previous section.
Let’s look at how to set up and use Git in RStudio Projects.

5.4.1 Setting up Git/GitHub with Projects

You can Git initialize new RStudio Projects, Git initialize existing projects,
and create RStudio Projects from cloned repos. When you do any of these
things, RStudio automatically adds a .gitignore file telling Git to ignore
.Rproj.user, .Rhistory, and .RData files.

Git with a new project

To create a new project with Git version control, go to File in the RStudio
menu bar. Then click New Project…. In the box that appears (see Figure 5.4)
select New Directory Empty Project. Enter the Project’s name and desired
directory. Make sure to check the dialog box for Create a git repository
(see Figure 5.5).

Git initialize existing projects

If you have an existing RStudio Project and want to add Git version control to
it, first go to Tools in the RStudio menu bar. Then select Project Options
…. Select the Git/SVN icon. Finally, select Git from the drop-down menu for
Version Control System:.

Clone repository into a new project

Again go to File in the RStudio menu bar to create a new project from
a cloned GitHub repository. Then click New Project…. Select the Version
Control option and then Git. Finally, paste the repository’s URL in the
field called Repository URL:, enter the directory you would like to locate the
cloned repo in, and click Create Project.

5.4 RStudio and GitHub 111

Add existing Project repository to GitHub

You can push an existing Project repository stored on your computer to a new
remote repository on GitHub. To do this, first create a new repo on GitHub
with the same name as your RStudio Project (see Section 5.3.3). Then copy
the remote repository’s URL like we saw before when we cloned a repository
from GitHub (see Section 5.3.3). Open a new shell from within RStudio. To
do this, click the Shell button in the Git tab’s More drop-down menu (it
looks like a gear). Now follow the same steps that we used in Section 5.3.3 to
connect a locally stored repository to GitHub for the first time.

FIGURE 5.6: The Git Repository Tab in RStudio

FIGURE 5.7: Adding Changes to the Repository

5.4.2 Using Git in RStudio Projects

The RStudio Git tab allows you to do many of the same things with Git that
we covered in the previous section. In Figure 5.6 you will see the Git tab for
a new RStudio Project called example-project. It has two files that have not
been added or committed to Git. To add and commit the files to the repository,
click on the dialog boxes next to the file names. In Figure 5.7 you can see that
I’ve created a new R file called example-script.R and clicked the dialog box
next to it, along with the other files. The yellow question marks in the top
panel have now become green A’s for “add”. Clicking Commit opens a new
window called Review Changes where you can commit the changes. Simply
write a commit message in the box called Commit Message in the Review
Changes window and click Commit. If you add file names to the .gitignore
files, they will not show up in RStudio’s Git tab.

If you are using a GitHub repo that is associated with a remote repository on
GitHub, you can push and pull it with the Pull Branches and Push Branch
buttons in Git menu bar (the down and up arrows respectively). You can use
the same buttons in the Review Changes window. The Git tab also allows

112 5 Storing, Collaborating, Accessing Files, and Versioning

you to change branches, revert to previous commits, add files to .gitignore,
and view your commit history. You can always use the More -> Shell… option
to open a new shell with the Project set as the working directory to complete
any other Git task you might want to do.

Chapter summary

In this chapter we have primarily learned how to store text-based reproducible
research files in ways that allow us and others to access them easily from many
locations, enable collaboration, and keep a record of previous versions. In the
next chapter, we will learn how to use text-based files to reproducibly gather
data that we can use in our statistical analyses.

6
Gathering Data with R

How you gather your data directly impacts how reproducible your research
will be. You should try your best to document every step of your data gath-
ering process. Reproduction will be easier if your documentation—especially,
variable descriptions and source code—makes it easy for you and others to
understand what you have done. If all of your data gathering steps are tied
by your source code, then independent researchers (and you) can more easily
regather the data. Regathering data will be easiest if running your code al-
lows you to get all the way back to the raw data files, the rawer the better.
Of course, this may not always be possible. You may need to conduct inter-
views or compile information from paper-based archives, for example. Data
hosted online may disappear when the host ceases operation. The best you
can sometimes do is describe your data gathering process in detail or rehost
an original data set. Nonetheless, R’s automated data gathering capabilities
for internet-based information is extensive. Learning how to take full advan-
tage of these capabilities greatly increases reproducibility and can save you
considerable time and effort over the long run.

In this chapter we’ll learn strategies for how to gather quantitative data in
a fully reproducible way. We’ll start by learning how to use data gathering
makefiles to organize your whole data gathering process so that it can be
completely reproduced. Then we will learn the details of how to actually load
data into R from various sources, both locally on your computer and remotely
via the internet. In the next chapter (Chapter 7), we’ll learn the details of
how to clean up raw data so that it can be merged into data frames that can
be used for statistical analyses.

6.1 Organize Your Data Gathering: Makefiles

Before getting into the details of using R to gather data, let’s start by creating
a plan to organize the process. Organizing your data gathering process from
the beginning of a research project improves the possibility of reproducibility

113

114 6 Gathering Data with R

and can save you significant effort over the course of the project by making it
easier to add and regather data later on.

A key part of reproducible data gathering with R, like reproducible research
in general, is segmenting the process into modular files that can all be run in
sequence by a common “makefile”. In this chapter we’ll learn how to create
make-like files run exclusively from R as well as GNU Make makefiles,1 which
you run from a shell.2 Learning how to create R make-like files is fairly easy.
Using GNU Make does require learning some more new syntax. However, it
has one very clear advantage: it only runs a source code file that has been
updated since the last time you ran the makefile. This is very useful if part of
your data-gathering process is very computationally and time intensive.

Segmenting your data gathering into modular files and tying them with some
sort of makefile allows you to more easily navigate research text and find errors
in the source code. The makefile’s output is the data set that you’ll use in the
statistical analyses. There are two types of source code files that the makefile
runs: data gathering/cleanup files and merging files. Data cleanup files bring
raw individual data sources into R and transform them so that they can be
merged with data from the other sources. Many of the R tools for data cleanup
and merging will be covered in Chapter 7. In this chapter, we mostly cover
the ways to bring raw data into R. Merging files are executed by the makefile
after it runs the data gathering/cleanup files.

It’s a good idea to have the source code files use very raw data as input.
Your source code should avoid directly changing these raw data files. Instead,
changes should be put into new objects and data files. Doing this makes it
easier to reconstruct the steps you took to create your data set. Also, while
cleaning and merging your data you may transform it in unintended ways,
for example, accidentally deleting some observations that you wanted to keep.
Having the raw data makes it easy to go back and correct your mistakes.

The files for the examples used in this section can be downloaded from
GitHub at: https://github.com/christophergandrud/rep-res-book-v3-
examples.

6.1.1 R Make-like files

When you create make-like files in R to organize and run your data gathering,
you usually only need one or two functions, setwd() and source(). As we
talked about in Chapter 4, setwd() tells R where to look for and place files.
source() tells R to run code in an R source code file.3 Let’s see what an R

1GNU stands for “GNU’s Not Unix”, indicating that it is Unix-like.
2To standardize things, I use the terms “R make-like file” for files created and run in R

and the standard “makefile” for files run by Make.
3We use the command more in Chapter 8.

https://github.com/christophergandrud/rep-res-book-v3-examples
https://github.com/christophergandrud/rep-res-book-v3-examples

6.1 Organize Your Data Gathering: Makefiles 115

data makefile might look like for a project with a file structure similar to the
example project in Figure 4.1. The file paths in this example are for Unix-like
systems and the make-like file is called Makefile.R.

################ # Example R make-like file
Christopher Gandrud
Updated 12 January 2019
################

Set working directory
setwd("/example-project/data/")

Gather and cleanup raw data files with a for loop
gatherers <- c("gather-1.R", "gather-2.R", "gather-3.R")
for (i in gatherers) source(i)

Merge cleaned data frames into data frame object cleaned_data
source("merge-data.R")

This code first sets the working directory. Then it runs three source code files
to gather data from three different sources. These files gather the data and
clean it so that it can be merged. The cleaned data frames are available in the
current workspace. Next the code runs the merge-data.R file that merges the
data frames and saves the output data frame as a CSV formatted file. The
CSV file could be the main file we use for statistical analysis. merge-data.R
also creates a Markdown file with a table describing the variables and their
sources. We’ll come back to how to create tables in Chapter 9.

You can run the commands in this file one-by-one or run the make-like file by
putting it through the source() function so that it will run it all at once.

6.1.2 GNU Make

R make-like files are a simple way to tie together a segmented data gathering
process. If one or more of the source files that our previous example runs
is computationally intensive it is a good idea to run them only when they
are updated. However, this can become tedious, especially if there are many
segments. The well-established GNU Make command-line program4 deals with
this problem by comparing the output files’ time stamps5 to time stamps of

4GNU Make was originally developed in 1977 by Stuart Feldman as a way to compile
computer programs from a series of files, its primary use to this day. For an overview, see
http://en.wikipedia.org/wiki/Make_(software). For installation instructions, please see
Section 1.5.2.

5A file’s time stamp records the time and date when it was last changed.

http://en.wikipedia.org/wiki/Make_(software)

116 6 Gathering Data with R

the source files that created them. If a source file has a time stamp that is
newer than its output, Make will run it. If the source’s time stamp is older
than its output, Make will skip it.

In Make terminology the output files are called “targets” and the files that
create them are called “prerequisites”. You specify a “recipe” to create the
targets from the prerequisites. The recipe is basically just the code you want
to run to make the target file. The general form is:

TARGET ... : PREREQUISITE ...
RECIPE
...
...

Note that, unlike in R, tabs are important in Make. They indicate what lines
are the recipe. Make uses the recipe to ensure that targets are newer than
prerequisites. If a target is newer than its prerequisite, Make does not run the
prerequisite.

The basic idea of reproducible data gathering with Make is similar to what we
saw before, with a few twists and some new syntax. Let’s see an example that
does what we did before: gather data from three sources, clean and merge the
data, and save it in CSV format.

Example makefile

The first thing we need to do is create a new file called Makefile6 and place it
in the same directory as the data gathering files we already have. The makefile
we are going to create runs prerequisite files by the alphanumeric order of their
file names. So we need to ensure that the files are named in the order that we
want to run them. Now let’s look at the actual makefile:

################
Example Makefile
Christopher Gandrud
Updated 1 July 2013
Influenced by Rob Hyndman (31 October 2012)
See: http://robjhyndman.com/researchtips/makefiles/
################

Key variables to define
RDIR = .
MERGE_OUT = merge-data.Rout

6Alternatively, you can call the file GNUmakefile or makefile.

6.1 Organize Your Data Gathering: Makefiles 117

Create list of R source files
RSOURCE = $(wildcard $(RDIR)/*.R)

Files to indicate when the RSOURCE file was run
OUT_FILES = $(RSOURCE:.R=.Rout)

Default target
all: $(OUT_FILES)

Run the RSOURCE files
$(RDIR)/%.Rout: $(RDIR)/%.R

R CMD BATCH $<

Remove Out Files
clean:

rm -fv $(OUT_FILES)

Remove merge-data.Rout
cleanMerge:

rm -fv $(MERGE_OUT)

Ok, let’s break down the code. The first part of the file defines variables that
will be used later on. For example, in the first line of executable code (RDIR
= .) we create a simple variable7 called RDIR with a period (.) as its value.
In Make and Unix-like shells, periods indicate the current directory. The next
line allows us to specify a variable for the outfile created by running the merge-
data.R file. This will be useful later when we create a target for removing this
file to ensure that the merge-data.R file is always run.

The third executed line (RSOURCE:= $(wildcard $(RDIR)/*.R)) creates a
variable containing a list of all the names of files with the extension .R, i.e. our
data gathering and merge source code files. This line has some new syntax, so
let’s work through it. In Make (and Unix-like shells generally) a dollar sign ($)
followed by a variable name substitutes the value of the variable in place of
the name.8 For example, $(RDIR) inserts the period . that we defined as the
value of RDIR previously. The parentheses are included to clearly demarcate
where the variable name begins and ends.9

You may remember the asterisk (*) from the previous chapter. It is a “wild-

7Simple string variables are often referred to as “macros” in GNU Make. A common
convention in Make and Unix-like shells generally is to use all caps for variable names.

8This is a kind of parameter expansion. For more information about parameter expansion,
see Frazier (2008).

9Braces ({}) are also sometimes used for this.

118 6 Gathering Data with R

card”, a special character that allows you to select file names that follow a
particular pattern. Using *.R selects any file name that ends in .R.

Why did we also include the actual word wildcard? The wildcard function
is different from the asterisk wildcard character. The function creates a list
of files that match a pattern. In this case the pattern is $(RDIR)/*.R. The
general form for writing the wildcard function is: $(wildcard PATTERN).

The third line (OUT_FILES = $(RSOURCE:.R=.Rout)) creates a variable for
the .Rout files that Make will use to tell how recently each R file was run.10

$(RSOURCE:.R=.Rout) is a variable that uses the same file name as our
RSOURCE files, but with the file extension .Rout.

The second part of the makefile tells Make what we want to create and how
to create it. In the line all: $(OUT_FILES) we are specifying the makefile’s
default target. Targets are the files that you instruct Make to make. all: sets
the default target; it is what Make tries to create when you enter the command
make in the shell with no arguments. We will see later how to instruct Make
to compile different targets.

The next two executable lines ($(RDIR)/%.Rout: $(RDIR)/%.R and R CMD
BATCH $<) run the R source code files in the directory. The first line speci-
fies that the .Rout files are the targets of the .R files. The percent sign (%)
is another wildcard. Unlike the asterisk, it replaces the selected file names
throughout the command used to create the target.

The dollar and less-than signs ($<) indicate the first prerequisite for the target,
i.e. the .R files. R CMD BATCH is a way to call R from a Unix-like shell, run
source files, and output the results to other files.11 The out-files it creates have
the extension .Rout.

The next two lines specify another target: clean. When you type make clean
into your shell, Make will follow the recipe: rm -fv $(OUT_FILES). This re-
moves (deletes) the .Rout files. The f argument (force) ignores files that don’t
exist and the v argument (verbose) instructs Make to tell you what is happen-
ing when it runs. When you delete the .Rout files, Make will run all of the .R
files the next time you call it.

The last two lines help us solve a problem created by the fact that our simple
makefile doesn’t push changes downstream. For example, if we make a change
to gather-2.R and run make, only gather-2.R will be rerun. The new data frame
will not be added to the final merged data set. To overcome this problem, the

10The R out-file contains all of the output from the R session used while running the file.
These can be a helpful place to look for errors if your makefiles give you an error like make:
*** [gather.Rout] Error 1.

11You will need to make sure that R is in your PATH. Setting this up is different on
different systems. If on Mac and Linux you can load R from the Terminal by typing R, R is
in your PATH. The R installation usually sets this up correctly. There are different methods
for changing the file path on different versions of Windows.

6.1 Organize Your Data Gathering: Makefiles 119

last two lines of code create a target called cleanMerge; this removes only the
merge-data.Rout file.

Running the Makefile

To run the makefile for the first time, change the working directory to where
the file is and type make into your shell. It will create the CSV final data file
and four files with the extension .Rout, indicating when the segmented data
gathering files were last run.12

When you run make in the shell for the first time, you should get the output:

R CMD BATCH gather-1.R
R CMD BATCH gather-2.R
R CMD BATCH gather-3.R
R CMD BATCH merge-data.R

If you run it a second time without changing the R source files, you will get
the following output:

make: Nothing to be done for 'all'.

To remove all of the .Rout files, set the make target to clean:

make clean

rm -fv ./gather-1.Rout ./gather-2.Rout ./gather-3.Rout
./merge-data.Rout
./gather-1.Rout
./gather-2.Rout
./gather-3.Rout
./merge-data.Rout

If we run the following code:

Remove merge-data.Rout and make all R source files
make cleanMerge all

then Make will first remove the merge-data.Rout file (if there is one) and then
run all of the R source files as need be. merge-data.R will always be run. This
ensures that changes to the gathered data frames are updated in the final
merged data set.

12If you open these files, you will find the output from the R session used when their
source file was last run.

120 6 Gathering Data with R

Makefiles and RStudio Projects

You can run makefiles from RStudio’s Build tab. For the type of makefile we
have been using, the main advantage of running it from within RStudio is that
you don’t have to toggle between RStudio and the shell. Everything is in one
place. Imagine that the directory with our makefile is an RStudio Project. If a
Project already contains a makefile, RStudio will automatically open a Build
tab on the Environment/History/Connections pane, the same place where the
Git tab appears (see Figure 6.1).13

The Build tab has buttons you can click to Build All (this is equivalent to
make all), and, in the More drop-down menu, Clean all (i.e., make clean)
and Clean and Rebuild (i.e., make clean all). As you can see in Figure 6.1,
the Build tab shows you the same output you get in the shell.

FIGURE 6.1: The RStudio Build Pane

Other information about makefiles

Note that Make relies heavily on commands and syntax of the shell program
that you are using. The above example was written and tested on a Mac. It
should work on other Unix-like computers without modification.

You can use Make to build almost any project from the shell, not just
to run R source code files. It was an integral part of early reproducible
computational research (Fomel and Claerbout, 2009; Buckheit and Donoho,
1995). Rob Hyndman more recently posted a description of the makefile he
uses to create a project with R and LaTeX.14 The complete source of in-
formation on GNU Make is the official online manual. It is available at:
http://www.gnu.org/software/make/manual/.

13If a project doesn’t have a makefile, you can still set up RStudio Build. Click on Build
in the Menu bar then Configure Build Tools Select Makefile from the drop-down
menu, then Ok. You will still need to manually add a Makefile in the Project’s root directory.

14See his blog at: https://robjhyndman.com/hyndsight/makefiles/, which was posted 31
October 2012. This method largely replicates what we do in this book with knitr. Nonethe-
less, it has helpful information about Make that can be used in other tasks. It was in fact
helpful for writing this section of the book.

http://www.gnu.org/software/make/manual/
https://robjhyndman.com/hyndsight/makefiles/

6.2 Importing Locally Stored Data Sets 121

6.2 Importing Locally Stored Data Sets

Now that we’ve covered the big picture, let’s learn the different tools you
will need to know to gather data from different types of sources. The most
straightforward place to load data from is a local file, e.g. one stored on your
computer. Though storing your data locally does not really encourage repro-
ducibility, most research projects will involve loading data this way at some
point. The tools you will learn for importing locally stored data files will also
be important for most of the other methods further on.

Data stored in plain-text files on your computer can be loaded into R using
the read.table() function. For example, imagine we have a CSV file called
test-data.csv stored in the current working directory. To load the data set into
R, type:

test_data <- read.table("test-data.csv", sep = ",",
header = TRUE)

If you are using RStudio, you can do the same thing with drop-down menus.
To open a plain-text data file, click on Environment Import Dataset… From
Text File…. In the box that pops up, specify the column separator, whether
or not you want the first line to be treated as variable labels, and other
options. This is initially easier than using read.table(), but it is much less
reproducible.

If the data is not stored in plain-text format but is instead saved in a format
created by another statistical program such as SPSS, SAS, or Stata, we can
import it using commands in the foreign package. For example, imagine we
have a data file called data-1.dta stored in our working directory. This file
was created by the Stata statistical program. To load the data into an R data
frame object called stata_data, type:

Load foreign package
library(foreign)

Load Stata formatted data
stata_data <- read.dta(file = "data-1.dta")

As you can see, functions in the foreign package have similar syntax to
read.table(). To see the full range of commands and file formats that the
foreign package supports, use the following:

122 6 Gathering Data with R

library(help = "foreign")

Typically an even simpler solution is to use import() from the rio package.
It will automatically try to find the right way to parse whatever data format
you give it. For example:

stata_data <- rio::import("data-1.dta")

If you have data stored in a spreadsheet format such as Excel’s .xlsx, it may
be best to first clean up the data in the spreadsheet program by hand and
then save the file in plain-text format. When you clean up the data, make
sure that the first row has the variable names and that observations are in the
following rows. Also, remove any extraneous information such as notes, colors,
and so on that will not be part of the data frame. import() can also attempt
to import .xlsx files. This is much easier if they are cleaned up to resemble
text files.

To aid reproducibility, locally stored data should include careful documenta-
tion of where the data came from and how, if at all, it was transformed before
it was loaded into R. Ideally, the documentation would be written in a text
file saved in the same directory as the raw data file.

6.3 Importing Data Sets from the Internet

There are many ways to import data that is stored on the internet directly
into R. We have to use different methods depending on where and how the
data is stored.

6.3.1 Data from non-secure (http) URLs

Importing data into R that is located at a non-secure URL15—ones that start
with http—is straightforward, provided that:

• the data is stored in a simple format, e.g. plain-text,

• the file is not embedded in a larger HTML website.

We already discussed the first issue in detail. You can determine if the data

15URL stands for “Uniform Resource Locator”.

6.3 Importing Data Sets from the Internet 123

file is embedded in a website by opening the URL in your web browser. If you
only see the raw plain-text data, you are probably good to go. To import the
data, include the URL as the file’s name in your read.table() function.

6.3.2 Data from secure (https) URLs

Storing data at non-secure URLs is now very uncommon. Services like Drop-
box, GitHub, and Dataverse store their data at secure URLs. You can tell if
the data is stored at a secure web address if it begins with https rather than
http. We have to use a different function to download data from secure URLs.

As we saw last chapter, in Section 5.2.2, import() has no problem gathering
data from secure URLs, e.g.:

Place the URL into the object fin_url
fin_url <- "https://bit.ly/2xlQ2j5"

Download data
fin_regulator <- import(fin_url, format = "csv")

6.3.3 Compressed data stored online

Sometimes data files are large, making them difficult to store and download
without compressing them. There are a number of compression methods such
as Zip and Tar.16 Zip files have the extension .zip and Tar files use extensions
such as .tar and .gz. In most cases17 you can download, decompress, and
create data frame objects from these files directly in R. To do this, you need
to18

• create a temporary file with tempfile() to store the zipped file, which you
will later remove with unlink() at the end,

• download the file with download.file(),

• decompress the file with one of the commands in base R,19

• read the file with read.csv() or import().

16Tar archives are sometimes referred to as ‘tar balls’.
17Some formats that require the foreign package to open are more difficult. This is because

functions such as for opening Stata files only accept file names or URLs as arguments, not
connections, which you create for unzipped files.

18The description of this process is based on a Stack Overflow comment by Dirk Eddelbuet-
tel (see http://stackoverflow.com/questions/3053833/using-r-to-download-zipped-da
ta-file-extract-and-import-data?answertab=votes#tab-top, posted 10 June 2010.)

19To find a full list of functions, type ?connections into the R console.

http://stackoverflow.com/questions/3053833/using-r-to-download-zipped-data-file-extract-and-import-data?answertab=votes#tab-top
http://stackoverflow.com/questions/3053833/using-r-to-download-zipped-data-file-extract-and-import-data?answertab=votes#tab-top

124 6 Gathering Data with R

The reason that we have to go through so many extra steps is that compressed
files are more than just a single file and contain a number of files as well as
metadata.

Let’s download a compressed file called uds_summary.csv from (Pemstein
et al., 2010). It’s in a compressed file called uds_summary.csv.gz. At the time
of writing, the file’s URL address is http://www.unified-democracy-scor
es.org/files/20140312/z/uds_summary.csv.gz.

For simplicity, store the URL in an object called 'URL'
URL <- paste0("http://www.unified-democracy-scores.org/",

"files/20140312/z/uds_summary.csv.gz")

Create a temporary file called 'temp' to put the zip file into.
temp <- tempfile()

Download the compressed file into the temporary file
download.file(URL, temp)

Decompress the file and convert it into a data frame
uds_data <- read.csv(gzfile(temp, "uds_summary.csv"))

Delete the temporary file
unlink(temp)

Show variables in data
names(uds_data)

Note I used paste0() to split the URL over two lines so I could print the
whole URL on this page.

6.3.4 Data APIs and feeds

There are a growing number of packages that can gather data directly from
a variety of internet sources and import them into R. Most of these packages
use the sources’ web application programming interfaces (APIs). Web APIs
allow programs to interact with a website. Needless to say, this is great for
reproducible research. It not only makes the data gathering process easier as
you don’t have to download many Excel files and fiddle around with them
before even getting the data into R, but it also makes replicating the data
gathering process much more straightforward and makes it easy to update
data sets when new information becomes available.

Warning: An R package that downloads data from an API will only work as

http://www.unified-democracy-scores.org/files/20140312/z/uds_summary.csv.gz
http://www.unified-democracy-scores.org/files/20140312/z/uds_summary.csv.gz

6.3 Importing Data Sets from the Internet 125

long as the package maintainer keeps up with changes made to the API and
the service the API calls still exists. If one of these conditions doesn’t hold,
the function call will break. It will not be possible to easily reproduce the data
gathering process. Because of these threats to reproducibility, I recommend
saving a copy of the data you download and considering making it available
for replication.

API R package example

Each of these packages has its own syntax and it isn’t possible to go over
all of them here. Nonetheless, let’s look at an example of accessing World
Bank data with the WDI to give you a sense of how these packages work.
Imagine that we want to gather data on fertilizer consumption. We can use
WDI ’s WDIsearch() function to find fertilizer consumption data available at
the World Bank:

Load WDI package
library(WDI)

Search World Bank for fertilizer consumption data
WDIsearch("fertilizer consumption")

indicator
[1,] "AG.CON.FERT.ZS"
[2,] "AG.CON.FERT.PT.ZS"
[3,] "AG.CON.FERT.MT"
name
[1,] "Fertilizer consumption (kilograms per hectare of arable land)"
[2,] "Fertilizer consumption (% of fertilizer production)"
[3,] "Fertilizer consumption (metric tons)"

This call returns a selection of indicator numbers and their names.20 Let’s
gather data on countries’ fertilizer consumption in kilograms per hectare of
arable land. The indicator number for this variable is: AG.CON.FERT.ZS. We
can use the function WDI() to gather the data and put it in an object called
fert_cons_data.

fert_cons_data <- WDI(indicator = "AG.CON.FERT.ZS",
start = 2010, end = 2016)

The start and end arguments allow us to set the starting and ending year of
the data to download.

20You can also search the World Bank Development Indicators website. The indicator
numbers are at the end of each indicator’s URL.

126 6 Gathering Data with R

The data we downloaded looks like this:

head(fert_cons_data)

iso2c country AG.CON.FERT.ZS year
1 1A Arab World 68.36 2016
2 1A Arab World 73.26 2015
3 1A Arab World 68.16 2014
4 1A Arab World 62.40 2013
5 1A Arab World 64.10 2012
6 1A Arab World 104.90 2011

You can see that WDI has downloaded data for four variables: iso2c,21 coun-
try, AG.CON.FERT.ZS and year.

6.4 Advanced Automatic Data Gathering: Web Scraping

If a package does not already exist to access data from a particular website,
there are other ways to automatically “scrape” data with R. This section
briefly discusses some of R’s web scraping tools and techniques to get you
headed in the right direction to do more advanced data gathering.

The general process

Simple web scraping involves downloading a file from the internet, parsing it
(i.e. reading it), and extracting the data you are interested in then putting it
into a data frame object. We already saw a simple example of this when we
downloaded data from a secure HTTPS website.

The complexity of this process depends on how structured the data is. If
the data is in a CSV file, then all we need is the import() function. Less
structured data requires more effort to download and parse. For example, data
may be stored in an HTML formatted table within a more complicated HTML
marked up webpage. The XML package (Temple Lang, 2020) has a number
of useful functions such as readHTMLTable() for parsing and extracting this
kind of data. The XML package also clearly has functions for handling XML—
Extensible Markup Language—formatted data. In addition, the helpful rvest
(Wickham, 2019b) package provides set of functions with capabilities similar to

21These are the countries’ or regions’ International Standards Organization’s two-letter
codes. For more details, see https://www.iso.org/iso-3166-country-codes.html.

https://www.iso.org/iso-3166-country-codes.html

6.4 Advanced Automatic Data Gathering: Web Scraping 127

and often more capable than XML. If the data is stored in JSON—JavaScript
Object Notation—you can read it with a package like jsonlite (Ooms et al.,
2018).

There are more websites with APIs than R packages designed specifically to
access each one. If an API is available, the httr package (Wickham, 2019a)
may be useful.

More tools to learn for web scraping

Beyond learning about the various R packages that are useful for R web scrap-
ing, an aspiring web scraper should probably invest time learning a number
of other skills:

• HTML: Obviously you will encounter a lot of HTML markup when web
scraping. Having a good understanding of the HTML markup language will
be very helpful. W3 Schools (https://www.w3schools.com/) is a free re-
source for learning HTML as well as JSON, JavaScript, XML, and other
languages you will likely come across while web scraping.

• Regular Expressions: Web scraping often involves finding character patterns.
Some of this is done for you by the R packages above that parse text. There
are times, however, when you are looking for particular patterns, like tag
IDs, that are particular to a given website and change across the site based
on a particular pattern. You can use regular expressions to deal with these
situations. R has a comprehensive, if bare-bones, introduction to regular
expressions. To access it, type ?regex into your R console.

• Looping: Web scraping often involves applying a function to multiple things,
e.g. tables or HTML tags. To do this in an efficient way, you will need to
use loops and apply functions. Matloff (2011) provides a comprehensive
overview. The dplyr (Wickham et al., 2019b) and purrr (Henry and Wick-
ham, 2019) packages are useful for data frame and vector manipulation.

• Finally, Munzert et al. (2015) provide a comprehensive overview of web
scraping and text mining with R.

Chapter summary

In this chapter, we learned how to reproducibly gather data from a number
of sources. If the data we are using is available online, we may be able to
create really reproducible data gathering files. These files have commands
that others can execute with makefiles that allow them to actually regather
the exact data we used. The techniques we can use to gather online data also
make it easy to update our data when new information becomes available.
Of course, it may not always be possible to have really reproducible data

https://www.w3schools.com/

128 6 Gathering Data with R

gathering. Nonetheless, you should always aim to make it clear to others (and
yourself) how you gathered your data. In the next chapter, we will learn how
to clean and merge multiple data files so that they can easily be used in our
statistical analyses.

7
Preparing Data for Analysis

Once we have gathered the raw data that we want to include in our statistical
analyses, we generally need to clean it up so that it can be merged into a single
data set that we can easily use for statistical analysis. In this chapter we will
learn how to create the data gathering and merging files we saw in the last
chapter. This includes recoding and transforming variables in the data set so
that the data sets can be easily merged. This will also be useful information
in later chapters as well. If you are very familiar with data transformations in
R, you may want to skip to the next chapter.

7.1 Cleaning Data for Merging

In order to successfully merge two or more data frames, we need to make
sure that they are in the same format. Let’s look at some of the important
formatting issues and how to reformat your data frames so that they can be
easily merged.

7.1.1 Get a handle on your data

Before doing anything to your data, it is a good idea to ‘look at it’ to see what
needs to be done. Taking a little time to become acquainted with your data
will help you avoid many error messages and much frustration.

You could type a data frame object’s name into the R console. This will print
the entire data frame in your console. For data frames with more than a few
variables and observations, this is impractical. We have already seen a number
of functions that are useful for looking at parts of your data. As we saw in
Chapter 3, the names() function shows you the variable names in a data frame
object. The head() function shows the names plus the first few observations
in a data frame. tail() shows the last few. str() returns a summary of a
data frame, including the number of observations and variables as well as the
variable types.

129

130 7 Preparing Data for Analysis

Use the dim() (dimensions) function to quickly see the number of observations
and variables (the number of rows and columns) in a data frame object. For
example, let’s test out dim() with the fert_cons_data object we created in
Chapter 6:

dim(fert_cons_data)

[1] 1848 4

The first number is the number of rows in the data frame (1848), and the
second is the number of columns (4). You can also use the nrow() function to
find just the number of rows and ncol() to see only the columns.

The summary() function is especially helpful for seeing basic descriptive statis-
tics for all of the variables in a data frame and also the variable types. Here
is an example:

summary(fert_cons_data)

iso2c country AG.CON.FERT.ZS
Length:1848 Length:1848 Min. : 0
Class :character Class :character 1st Qu.: 27
Mode :character Mode :character Median : 107
Mean : 275
3rd Qu.: 181
Max. :33067
NA's :414
year
Min. :2010
1st Qu.:2011
Median :2013
Mean :2013
3rd Qu.:2015
Max. :2016
##

We can immediately see that the variables iso2c and country are character
strings. Because summary() is able to calculate means, medians, and so on
for AG.CON.FERT.ZS and year, we know they are numeric. Have a look
over the summary to see if there is anything unexpected like lots of missing
values (NA’s) or unusual maximum and minimum values. You can of course,
run summary() on a particular variable by using the component selector ($):

Summarize fertilizer consumption variable from fert_cons_data
summary(fert_cons_data$AG.CON.FERT.ZS)

7.1 Cleaning Data for Merging 131

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 27 107 275 181 33067
NA's
414

We’ll come back to why knowing this type of information is important for
merging and data analysis later in this chapter.

Another important function for quickly summarizing a data frame is table().
This creates a contingency table with counts of the number of observations
per combination of factor variables.

You can view a portion of a data frame object with View() This will open a
new window that lets you see a selection of the data frame. If you are using
RStudio, you can click on the data frame in the Environment tab and you will
get something similar. Note that neither of these viewers are interactive in that
you can’t use them to manipulate the data. They are only data viewers. To
be able to see similar windows that you can interactively edit, use the fix()
function in the same way that you use View(). This can be useful for small
edits, but remember that the edits are not reproducible.

Tibbles

Most of these data summary capabilities come “for free” when you use an
alternate type of data frame called a “tibble” (Müller and Wickham, 2019)
For example:

Create example tibble data frame
tbl_ex <- tibble::tibble(numbers = 1:26, letters = letters)

tbl_ex

A tibble: 26 x 2
numbers letters
<int> <chr>
1 1 a
2 2 b
3 3 c
4 4 d
5 5 e
6 6 f
7 7 g
8 8 h
9 9 i
10 10 j

132 7 Preparing Data for Analysis

... with 16 more rows

Entering a tibble’s object name in the console returns the condensed output,
the data dimmensions, and the variable types with the first 10 entries.

Tibbles are the data structure favored by the tidy data/tidyverse R data
paradigm (Wickham, 2014b). We will work with other packages of the Tidy-
verse, e.g. dplyr and ggplot2, in later chapters. Note that these packages often
work with traditional data frames as well (or will convert data frames to tib-
bles automatically).

7.1.2 Reshaping data

It is often a good idea if your data sets are kept in data frame type objects if
that is the format you will use for analysis. See Chapter 3 for how to convert
objects into data frames with the data.frame() function. Not only do data
sets (generally) need to be stored in data frame objects, they also need to
have the same layout before they can be merged. Most R statistical analysis
tools assume that your data is in “long” format. For an excellent discussion of
ideal data formats for statistical analysis, see Wickham (2014b). Long format-
ted data usually has columns that represent variables. Rows contain specific
observations. For example:

TABLE 7.1: Long-Formatted Data Example

Subject Variable1

Subject1

Subject2

Subject3

…

In this chapter we will mostly use examples of time-series cross-sectional data
(TSCS) that we want to have in long-format. Long-formatted TSCS data
is a data frame where rows identify observations of a particular subject at
particular points in time and there are multiple observations per subject (see
Table 7.2). In this chapter our TSCS data is specifically going to be countries
that are observed in multiple years.

If one of our raw data sets is not in this format, then we will need to reshape
or, using Wickham’s (2014b) terminology, “tidy” it. Some data sets are in
“wide” format, where one of the columns in what would be long formatted

7.1 Cleaning Data for Merging 133

TABLE 7.2: Long-Formatted Time-Series Cross-Sectional Data Example

Subject Time Variable1

Subject1 1

Subject1 2

Subject1 3

Subject2 1

Subject2 2

Subject2 3

…

data is “widened” to cover multiple columns. This is confusing to imagine
without an example. Table 7.3 shows how Table 7.2 looks when we widen the
time variable.

TABLE 7.3: Wide-Formatted Data Example

Subject Time1 Time2 Time3

Subject1

Subject2

…

The process of tidying data often causes confusion and frustration. Though
probably never easy, there are a number of useful R functions for changing data
from wide-format to long and vice versa. These include the matrix transpose
function (t())1 and the reshape() function, both are loaded in R by default.
tidyr (Wickham and Henry, 2019) is a very helpful package for reshaping data.
This package has more general tools for reshaping data and is worth investing
some time to learn well. In this section, we will look at tidyr’s pivot_longer()
function and use it to reshape a TSCS data frame from wide- to long-format.

1See this example by Rob Kabacoff: http://www.statmethods.net/management/reshape
.html. Note also that because the matrix transpose function is denoted with t, you should
not give any object the name t.

http://www.statmethods.net/management/reshape.html
http://www.statmethods.net/management/reshape.html

134 7 Preparing Data for Analysis

We will also encounter this function again in Chapter 10 when we want to
transform data so that it can be graphed. Note that if you want to go from
long to wide-format, use tidyr’s pivot_wider() function.

For illustration, let’s imagine that the fertilizer consumption data we previ-
ously downloaded from the World Bank is in wide, rather than long, format
and is in a data frame object called fert_wide. It looks like this:

fert_wide[, 1:4]

A tibble: 264 x 4
iso2c country `2016` `2015`
<chr> <chr> <dbl> <dbl>
1 AF Afghanistan 12.2 12.1
2 AL Albania 126. 108.
3 DZ Algeria 22.3 23.4
4 AS American Samoa NA NA
5 AD Andorra NA NA
6 AO Angola 7.98 8.05
7 AG Antigua and Barbuda 13.9 5.48
8 1A Arab World 68.4 73.3
9 AR Argentina 50.3 27.6
10 AM Armenia 110. 53.0
... with 254 more rows

See the chapter’s Appendix for the full code I used to reshape the data from
long- to wide-format.

Let’s think about how we want to tidy the data. We want to create two new
columns from the many columns that are now labeled by year. Let’s call the
new columns Year and Fert. The Year column will clearly contain the year
of each observation and Fert will contain the fertilizer consumption. Year will
be what pivot_longer() calls the variable’s “name” and Fert is the “value”.
In our fert_wide data, we don’t want the iso2c and country variables to
be gathered. These variables identify the data set’s subjects. So we can tell
pivot_longer() that we only want the columns with the between 2016 and
2010 to be used for the long variable. Note that the back ticks in the code
below allow us to specify numeric values as column names.

Gather fert_wide
fert_long <- tidyr::pivot_longer(fert_wide,

cols = `2016`:`2010`,
names_to = "Year",
values_to = "Fert")

7.1 Cleaning Data for Merging 135

fert_long

A tibble: 1,848 x 4
iso2c country Year Fert
<chr> <chr> <chr> <dbl>
1 AF Afghanistan 2016 12.2
2 AF Afghanistan 2015 12.1
3 AF Afghanistan 2014 12.1
4 AF Afghanistan 2013 14.9
5 AF Afghanistan 2012 28.1
6 AF Afghanistan 2011 6.61
7 AF Afghanistan 2010 4.25
8 AL Albania 2016 126.
9 AL Albania 2015 108.
10 AL Albania 2014 88.4
... with 1,838 more rows

7.1.3 Renaming variables

Frequently, in the data cleaning process we want to change the names of our
variables. This will make our data easier to understand and may even be
necessary to properly combine data sets (see below). In the previous example,
for instance, our fert_long data frame has two variables: Year and Fert.
Imagine, for the sake of demonstration, that we want to rename them year
and fert_cons. Renaming data frame variables is straightforward with the
rename() function in the dplyr package (Wickham et al., 2019b). To rename
both variable and value with the rename() function type:

fert_long <- dplyr::rename(fert_long,
year = Year,
fert_cons = Fert)

fert_long

A tibble: 1,848 x 4
iso2c country year fert_cons
<chr> <chr> <chr> <dbl>
1 AF Afghanistan 2016 12.2
2 AF Afghanistan 2015 12.1
3 AF Afghanistan 2014 12.1
4 AF Afghanistan 2013 14.9
5 AF Afghanistan 2012 28.1

136 7 Preparing Data for Analysis

6 AF Afghanistan 2011 6.61
7 AF Afghanistan 2010 4.25
8 AL Albania 2016 126.
9 AL Albania 2015 108.
10 AL Albania 2014 88.4
... with 1,838 more rows

7.1.4 Ordering data

You may have noticed that as a result of gathering fert_wide the data is now
ordered by country-year. Imagine that for some substantive reason that makes
the data easier to read, we rather want it ordered by year-country. Though
not required for merging in R, some statistical analyses assume that the data
is ordered in a specific way.

We can order observations in our data set using the order() function. For
example, to order fert_long by year-country, we type:

Order fert_long by year-country
fert_long <- fert_long[order(fert_long$year,

fert_long$country),]

head(fert_long)

A tibble: 6 x 4
iso2c country year fert_cons
<chr> <chr> <chr> <dbl>
1 AF Afghanistan 2010 4.25
2 AL Albania 2010 97.3
3 DZ Algeria 2010 19.5
4 AS American Samoa 2010 NA
5 AD Andorra 2010 NA
6 AO Angola 2010 8.43

dplyr has a function called arrange() that can also be useful for ordering your
data. arrange()’s syntax is much cleaner and easier to remember for data
frames than the operation we did with order(). To arrange the fert_long
data back to country-year with arrange() use:

fert_long <- dplyr::arrange(fert_long, country, year)

To arrange a variable in descending order, place it in the desc() function from
dplyr, e.g. arrange(fert_long, country, desc(year)).

7.1 Cleaning Data for Merging 137

7.1.5 Subsetting data

Sometimes you may want to use only a subset of a data frame. For example,
the density plot in the following figure shows us that the fert_long data has
a few very extreme values (see the chapter’s Appendix for the source code to
create this figure).

0.000

0.001

0.002

0.003

0.004

0 10000 20000 30000

 Fertilizer Consumption

D
e

n
s
ity

We can use the subset() function to examine these outliers, for example,
countries that have fertilizer consumption greater than 1000 kilograms per
hectare.

Create outlier data frame
fert_outliers <- subset(x = fert_long,

fert_cons > 1000)

fert_outliers

A tibble: 46 x 4
iso2c country year fert_cons
<chr> <chr> <chr> <dbl>
1 BH Bahrain 2010 1721.
2 BH Bahrain 2011 1178.
3 BH Bahrain 2012 1553.
4 BH Bahrain 2013 1606.
5 BH Bahrain 2014 1319.
6 BH Bahrain 2015 1319.
7 BH Bahrain 2016 1319.

138 7 Preparing Data for Analysis

8 HK Hong Kong SAR, China 2012 1307.
9 HK Hong Kong SAR, China 2014 1974.
10 HK Hong Kong SAR, China 2015 2334.
... with 36 more rows

If we want to drop these outliers from our data set, we can use subset()
again:

fert_long_sub <- subset(x = fert_long,
fert_cons <= 1000)

In this example, non-country units like “Arab World” are included. We might
also want to drop these units with subset(). For example:

fert_long_sub <- subset(x = fert_long_sub,
country != "Arab World")

We can also use subset() to remove observations with missing values (NA) for
fert_cons.

Remove observations of fert_cons
with missing values
fert_long_sub <- subset(x = fert_long_sub,

!is.na(fert_cons))

Summarize fert_cons
summary(fert_long_sub$fert_cons)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 26.2 103.0 129.7 170.9 900.0

Let’s step back. I’ve introduced a number of new logical operators and a new
function in the subsetting examples. The first example included the greater
than sign (>). The second example included the less than or equal to operator:
<=. The third example included the not equal operator: !=. In R, exclamation
points (!) generally denote ‘not’. We used this again in the final example in
combination with the is.na function. This function indicates if an element is
missing, so !is.na means “not missing”. See Table 7.4 for a list of R’s logical
operators. You can use these operators and functions when subsetting data
and throughout R.

7.1 Cleaning Data for Merging 139

TABLE 7.4: R’s Logical Operators

Operator Meaning

< less than
> greater than
== equal to
<= less than or equal to
>= greater than or equal to
!= not equal to
a | b a or b
a & b a and b
isTRUE(a) determine if a is TRUE

is.na missing
!is.na not missing
duplicated duplicated observation
!duplicated not a duplicated observation

7.1.6 Recoding string/numeric variables

You may want to recode your variables. In particular, when you merge data
sets you need to have identical identification values that R can use to match
each observation. If in one data set observations for the Republic of Korea are
referred to as “Korea, Rep.” and in another they are labeled “South Korea”, R
will not know to merge them. We need to recode values in the variables that we
want to match our data sets on. For example, in fert_long_sub the southern
Korean country is labeled “Korea, Rep.”. To recode it to “South Korea”, type:

Recode country == "Korea, Rep." to "South Korea"
fert_long_sub$country[fert_long_sub$country ==

"Korea, Rep."] <- "South Korea"

This code assigns “South Korea” to all values of the country variable that
equal “Korea, Rep.”.2 You can use a similar technique to recode numeric vari-
ables as well. The only difference is that you omit the quotation marks. We
will look at how to code factor variables later.

2The countrycode package (Arel-Bundock, 2018) is very helpful for creating standardized
country identification variables.

140 7 Preparing Data for Analysis

7.1.7 Creating new variables from old

As part of your data cleanup process (or later during statistical analysis), you
may want to create new variables based on existing variables. For example,
we could create a new variable that is the natural logarithm of fert_cons.
To do this, we run the variable through the log() function and assign a new
variable that we’ll call fert_cons_log.

fert_long_sub$fert_cons_log <- log(fert_long_sub$fert_cons)

summary(fert_long_sub$fert_cons_log)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.12 3.27 4.63 4.15 5.14 6.80

Imagine that when we summarized the new log transformed variable that we
had a minimum (and mean) value of -Inf. This would indicate that by logging
the variable we have created observations with the value negative infinity. R
calculates the natural logarithm of zero as negative infinity.3 We probably
don’t want negative infinity values. There are a few ways to deal with this.
We could drop all observations of fert_cons with the value zero before log
transforming it. Another common solution is recoding zeros as some small
nonnegative number like 0.001. For example:

Recode zeros in Fertilizer Consumption
fert_long_sub$fert_cons[fert_long_sub$fert_cons ==

0] <- 0.001

Natural log transform Fertilizer Consumption
fert_long_sub$fert_cons_log <- log(fert_long_sub$fert_cons)

Note that this example is included to demonstrate R syntax rather than to
prescribe a certain transformation of skewed data with zeros. The choice of
which transformation to make should ultimately be made based on the data,
model, and context. See Hyndman (2010) for more information on various
alternatives including Box-Cox (Box and Cox, 1964) and inverse hyperbolic
sine transformations (Burbidge and Robb, 1988).

Creating factor variables

We can create factor variables from numeric or string variables. For example,
we may want to turn the continuous numeric fert_cons variable into an or-

3R denotes positive infinity with Inf.

7.1 Cleaning Data for Merging 141

TABLE 7.5: Example Factor Levels

Number Label Value of FertilizerCon-
sumption

1 low < 18
2 medium low ≥ 18 and < 81
3 medium high ≥ 81 and < 158
4 high ≥ 158

dered categorical (i.e. factor) variable. Imagine that we want to create a factor
variable called fert_cons_group with four levels called ‘low’, ‘medium low’,
‘medium high’, and ‘high’. To do this, let’s first create a new numeric vari-
able based on the values listed in Table 7.5. Now let’s use a procedure that is
similar to the variable recoding we did earlier:4

Create numeric factor levels variable

Attach fert_long_sub data frame
attach(fert_long_sub)

Created new fert_cons_group variable based on # fert_cons
fert_long_sub$fert_cons_group[fert_cons < 18] <- 1
fert_long_sub$fert_cons_group[fert_cons >= 18 &

fert_cons < 81] <- 2
fert_long_sub$fert_cons_group[fert_cons >= 81 &

fert_cons < 158] <- 3
fert_long_sub$fert_cons_group[fert_cons >= 158] <- 4
fert_long_sub$fert_cons_group[is.na(fert_cons)] <- NA

Detach data frame
detach(fert_long_sub)

summary(fert_long_sub$fert_cons_group)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 2.00 3.00 2.66 4.00 4.00

You’ll notice that we don’t have a factor variable yet; our new variable is
numeric. We can use the factor() function to convert fert_cons_group into
a factor variable with the labels we want.

4In this code, I attached the data frame fert_long_sub so that it is easier to read.

142 7 Preparing Data for Analysis

Create vector of factor level labels
fc_labels <- c("low", "medium low", "medium high", "high")

Convert fert_cons_group to a factor
fert_long_sub$fert_cons_group <-

factor(fert_long_sub$fert_cons_group,
labels = fc_labels)

summary(fert_long_sub$fert_cons_group)

low medium low medium high high
281 310 392 398

We first created a character vector with the factor-level labels and then applied
using factor’s labels argument. Using summary() with a factor variable gives
us its level labels as well as the number of observations per level.

The cut() function provides a less code-intensive way of creating factors from
numeric ones and labeling factor levels. For example:

Create a factor variable with the cut function
fert_factor <- cut(fert_long_sub$fert_cons,

breaks = c(-0.01, 17.99, 80.99,
157.99, 999.99),

labels = fc_labels)

summary(fert_factor)

low medium low medium high high
281 310 392 398

The labels argument lets us specify the factor levels’ names. The breaks
argument lets us specify what values separate the factor levels. Note that we
set the first break as -0.01, not because any country had negative fertilizer
consumption, but because the intervals created by break() exclude the left
value and include the right value.5 If we had used 0, then all of the observations
where a country used effectively no fertilizer would be excluded from the “low”
category.

5In mathematical notation, the “low” level includes all values in the interval
(−0.01, 17.99].

7.2 Merging Data Sets 143

7.1.8 Changing variable types

Sometimes a variable will have the wrong type. For example, a numeric vari-
able may be incorrectly made a character string when a data set is imported
from Excel. You can change variable types with a number of functions. We
already saw how to convert a numeric variable to a factor variable with the
factor() function. Unsurprisingly, to convert a variable to a character, use
character() and numeric() to convert it to a numeric type variable. We can
place as. before these functions (e.g. as.factor()) as a way of coercing a
change in type.

Warning: Though these functions have straightforward names, a word of
caution is necessary. Always try to understand why a variable is not of the
type you would expect. Often variables have unexpected types because they
are coded (or miscoded) in a way that you didn’t anticipate. Changing the
variable types, especially when using as., can introduce new errors. Make sure
that the conversion made the changes you expected.

7.2 Merging Data Sets

In the previous section, we learned crucial skills for cleaning up data sets.
When your data sets are (a) in the same format and (b) have variables with
identically matching ID values, you can merge your data sets. In this section,
we’ll look at two different ways to merge data sets: binding and the merge()
function. We’ll also look at ways to address a common issue when merging
data: duplicated observations and columns.

7.2.1 Binding

As we saw in Chapter 3, if your data sets are in the same order—rows in all of
the data sets represent the same observation of the same subject—then you
can use the cbind() function to bind columns from the data sets together.
This situation is unusual when merging real-world data. If your data sets are
not in exactly the same order you will create a data set with nonsensical rows
that combine data from multiple observations. Therefore, you should avoid
using cbind() for merging most real-world data.

If you have data sets with the exact same columns and variable types and you
just want to attach one under the other, you can use the rbind() function. It

144 7 Preparing Data for Analysis

binds the rows in one object to the rows in another.6 It has the same syntax
as cbind(). Again, you should be cautious when using this function, though
it is more difficult to accidentally create a nonsensical data set with rbind().
R will give you an error if it cannot match your objects’ columns.

7.2.2 Merging data frames

Generally, the merge() function is the safest and most effective way to merge
two data sets. Imagine that we want to merge our fert_long_sub data frame
with two other data frames we created in Chapter 6: fin_regulator and dis-
prop_data. The simplest way to do this is to use the merge function twice,
i.e.:

Merge fin_regulator and disprop_data
merged_data_1 <- merge(x = fin_regulator, y = disprop_data,

by = "iso2c", all = TRUE)

Merge combined data set with and fert_long_sub
merged_data_1 <- merge(x = merged_data_1, y = fert_long_sub,

by = "iso2c", all = TRUE)

names(merged_data_1)

[1] "iso2c" "idn"
[3] "country.x" "year.x"
[5] "reg_4state" "country.y"
[7] "year.y" "disproportionality"
[9] "country" "year"
[11] "fert_cons" "fert_cons_log"
[13] "fert_cons_group"

Let’s go through this code. The x and y arguments specify which data frames
we want to merge. The by argument specifies what variable(s) in the two
frames identify the observations so that we can match them. In this exam-
ple, we are merging by countries’ ISO country two-letter codes.7 We set the
argument all = TRUE so that we keep all of the observations from both of
the data frames. If the argument is set to FALSE, only observations that are
common to both data frames will be included in the merged data frame. The
others will not be included.

6Some programming languages and statistical programs refer to this type of action as
“appending” one data set to another.

7Please see this chapter’s Appendix for details on how I created an ISO country two-letter
code variable in the fin_regulator data frame.

7.2 Merging Data Sets 145

You might have noticed that this isn’t actually the merge that we want to
accomplish with these data frames. Remember that observations are not iden-
tified in this time-series cross-section data by one country name or other coun-
try code variable. Instead, they are identified by both country and year vari-
ables. To merge data frames based on the overlap of two variables (e.g. match
Afghanistan-2010 in one data frame with Afghanistan-2010 in the other), we
need to add the union() function to merge’s by argument. Here is a full
example:

Merge fin_regulator and disprop_data
merged_data_2 <- merge(fin_regulator, disprop_data,

union("iso2c", "year"),
all = TRUE)

Merge combined data frame with fert_long_sub
merged_data_2 <- merge(merged_data_2, fert_long_sub,

union("iso2c", "year"),
all = TRUE)

names(merged_data_2)

[1] "iso2c" "year"
[3] "idn" "country.x"
[5] "reg_4state" "country.y"
[7] "disproportionality" "country"
[9] "fert_cons" "fert_cons_log"
[11] "fert_cons_group"

After merging data frames, it is always a good idea to look at the result
and make sure it is what you expected. Some post-merging cleanup may be
required to get the data frame ready for statistical analysis.

Bigger data

Before discussing post-merge cleanup, it is important to highlight ways to
handle large data sets. The merge() function and many of the other data
frame manipulation functions covered so far in this chapter may not perform
well with very large data sets. If you are using very large data sets, it might
be worth investing time learning how to use packages like dbplyr (Wickham
and Ruiz, 2019) and data.table packages (Dowle and Srinivasan, 2019). They
have many capabilities for working efficiently with large data sets. Likely, if
you have very large data, you will need to learn SQL (Structured Query Lan-

146 7 Preparing Data for Analysis

guage) or another special purpose data handling language.8 Once you know
how these languages work, you can incorporate them into your R workflow
with R packages like dbplyr.

Duplicate values

Duplicate observations are one thing to look out for after (and before) merg-
ing. You can use the duplicated() function to check for duplicates. Use the
function in conjunction with subscripts to remove duplicate observations. For
example, let’s create a new object called data_duplicates from the iso2c-years
that are duplicated in merged_data_2. Remember that iso2c and year are
in the first and second columns of the data frame.

Created a data frame of duplicated country-years
data_duplicates <- merged_data_2[

duplicated(merged_data_2[, 1:2]),]

Show the number of rows in data_duplicates
nrow(data_duplicates)

[1] 6

In this data frame, there are duplicated iso2c-year observations. We know this
because nrow tells us that the data frame with the duplicated values has rows,
i.e. observations.

To create a data set without duplicated observations (if there are duplicates),
add an exclamation point (!) before duplicated, i.e. not duplicated, in the
above code.

Created a data frame of unique country-years
data_not_duplicates <- merged_data_2[

!duplicated(merged_data_2[, 1:2]),]

Note that if you do have duplicated values in your data set and you run a
similar procedure on it, it will drop duplicated values that have a lower order
in the data frame. To keep the lowest ordered value and drop duplicates higher
in the data set, use duplicated’s fromLast argument like this: fromLast =
TRUE.

Warning: Look over your data set and the source code that created the data
set to try to understand why duplicates occurred. There may be a fundamental

8w3schools has an online SQL tutorial at: http://www.w3schools.com/sql/default.asp.

http://www.w3schools.com/sql/default.asp

7.2 Merging Data Sets 147

problem in the way you are handling your data that resulted in the duplicated
observations.

7.2.3 Duplicate columns

Another common post-merge cleanup issue is duplicate columns, i.e. variables.
These are variables from the two data frames with the same name that were
not included in merge’s by argument. For example, in our previous merged
data examples, there are three country name variables: country.x, country.y,
and country to signify which data frame they are from.9

You should decide what to do with these variables on a case-by-case basis. But
if you decide to drop one of the variables and rename the other, you can use
subscripts (as we saw in Chapter 3). The dplyr package has a useful function
called select() that can also remove variables from data frames. To remove
variables, write a minus sign (-) and then the variable name without quotes.
For example, imagine that we want to keep country.x and drop the other
variables.10 Let’s also remove the idn variable:

Remove country.y, country, X, and idn
final_cleaned <- dplyr::select(data_not_duplicates, -country.y,

-country, -idn)

Rename country.x = country
final_cleaned <- dplyr::rename(final_cleaned,

country = country.x)

names(final_cleaned)

[1] "iso2c" "year"
[3] "country" "reg_4state"
[5] "disproportionality" "fert_cons"
[7] "fert_cons_log" "fert_cons_group"

Alternatively, you can select specific variables to keep with the select function
by writing the variables’ names without a minus sign. Note: If you are merging
many data sets, it can sometimes be good to clean up duplicate columns
between each merge() call.

9The former two were created in the first merge between fin_regulator and disprop_data.
When the second merge was completed, there were no variables named country in the
MergeData2 data frame, so country did not need to be renamed in the new merged data
set.

10This version of the country variable is the most complete.

148 7 Preparing Data for Analysis

Chapter summary

This chapter has provided you with many tools for cleaning up your data to get
it ready for statistical analysis. Before moving on to the next chapter to learn
how to incorporate statistical analysis as part of a reproducible workflow with
knitr/R Markdown, it’s important to reiterate that the function we’ve covered
in this chapter should usually be embedded in the types of data creation files
we saw in Chapter 6. These files can then be tied together with a makefile into
a process that should be able to relatively easily take very raw data and clean it
up for use in your analyses. Embedding these functions in data creation source
code files, rather than just typing the functions into your R console or manually
changing data in Excel, will make your research much more reproducible. It
will also make it easier to backtrack and find mistakes that you may have
made while transforming the data. Including new or updated data when it
becomes available will also be much easier if you use a series of segmented
data creation source code files that are tied together with a makefile.

Appendix

R code for turning fert_cons_data into year-wide-format:

library(WDI)
library(tidyr)
library(dplyr)

Gather fertilizer consumption data from WDI
fert_cons_data <- WDI(indicator = "AG.CON.FERT.ZS")

Reshape fert_cons_data to year wide-format
fert_wide <- tidyr::pivot_wider(fert_cons_data,

names_from = year,
values_from = AG.CON.FERT.ZS)

Order fert_wide by country
fert_wide <- arrange(fert_wide, country)

R code for creating iso2c country codes with the countrycode package:

library(countrycode)

fin_regulator$iso2c <- countrycode(fin_regulator$country,
origin = "country.name",
destination = "iso2c")

R code for creating the chapter’s density plot:

library(ggplot2)

Set plot theme to "minimal"
theme_set(theme_minimal())

Create density plot
ggplot(data = fert_long, aes(fert_cons)) +

geom_density() +

149

150 7 Appendix

xlab("Fertilizer Consumption") + ylab("Density") +
theme_bw()

Part III

Analysis and Results

8
Statistical Modeling and knitr/R Markdown

When you have your data cleaned and organized, you will begin to examine
it with statistical analyses. In this book we don’t look at how to do statistical
analysis in R (a subject that would and does take up many other books).
Instead, we focus on how to make your analyses really reproducible. You
do this by dynamically connecting your data gathering and analysis source
code to your presentation documents. When you dynamically connect your
data gathering makefiles and analysis source code to your markup document,
you will be able to completely rerun your data gathering and analysis and
present the results whenever you compile the presentation documents. This
makes it very clear how you found the results that you are advertising. It
also automatically keeps the presentation of your results, including tables and
figures, up-to-date with any changes you make to your data and analyses
source code files.

You can dynamically tie your data gathering, statistical analyses, and presen-
tation documents together with knitr/R Markdown. In Chapter 3 you learned
basic knitr/rmarkdown package syntax. For the rest of the chapter, I’ll refer
to it as “knitr syntax”, but it applies to R Markdown as well when it is not
specific to LaTeX. In this chapter we will begin to learn knitr syntax in more
detail, particularly code chunk options for including dynamic code in your
presentation documents. This includes code that is run in the background,
i.e. not shown in the presentation document, as well as displaying the code
and output in your presentation document both as separate blocks and inline
with the text. We will also learn how to dynamically include code from lan-
guages other than R. We examine how to use knitr with modular source code
files. Finally, we will look at how to create reproducible random analyses and
how to work with computationally intensive code chunks.

The goal of this and the next two chapters, which cover dynamically present-
ing results in tables and figures, is to show you how to tie data gathering
and analyses into your presentation documents so closely that every time the
documents are compiled they actually reproduce your analysis and present
the results. Please see the next part of this book, Part IV, for details on how
to create the LaTeX and Markdown documents that can include knitr code
chunks.

Reminder: Before discussing the details of how to incorporate your analysis

153

154 8 Statistical Modeling and knitr/R Markdown

into your source code, it’s important to reiterate something we discussed in
Chapter 2. The syntax and capabilities of R packages and R itself can change
with new versions. Also, as we have seen for file path names, syntax can
change depending on what operating system you are using. So it’s important
to have your R session info available (see Section 2.2.1 for details) to make
your research more reproducible and future-proof. If someone reproducing
your research has this information, they will be able to download your files
and use the exact version of the software that you used. For example, CRAN
maintains an archive of previous R package versions that can be downloaded.1
Previous versions of R itself can also be downloaded through CRAN.2

8.1 Incorporating Analyses into the Markup

For a relatively short piece of code that you don’t need to run in multiple
presentation documents, it may be simplest to type the code directly into
chunks written in your knitr markup document. In this section we will learn
how to set knitr options for handling these code chunks. For a list of many of
the chunk options covered here, see Table 3.1.

8.1.1 Full code chunks

By default, knitr code chunks are run by R, and the code and any text out-
put (including warnings and error messages) are inserted into the text of your
presentation documents in blocks. The blocks are positioned in the final pre-
sentation document text at the points where the code chunk was written in
the knittable markup. Figures are inserted as well. Let’s look at the main
options for determining how code chunks are handled by knitr.

include

Use include=FALSE if you don’t want to include anything in the text of your
presentation document, but you still want to evaluate a code chunk. It is TRUE
by default.

1See: http://cran.r-project.org/src/contrib/Archive/.
2See: http://cran.r-project.org/src/base/.

http://cran.r-project.org/src/contrib/Archive/
http://cran.r-project.org/src/base/

8.1 Incorporating Analyses into the Markup 155

eval

The eval option determines whether or not the code in a chunk will be run.
Set the eval option to FALSE if you would like to include code in the presenta-
tion document text without actually running the code. By default it is set to
TRUE, i.e. the code is run. You can alternatively use a numerical vector with
eval. The numbers in the vector tell knitr which expressions in the chunk to
evaluate. For example, if you only want to evaluate the first two expressions,
set eval=1:2.

echo

If you would like to hide a chunk’s code from the presentation document, you
can set echo=FALSE. Note that if you also have eval=TRUE, then the chunk
will still be evaluated and the output will be included in your presentation
document. Clearly, if echo=TRUE, then source code will be included in the
presentation document. As with eval, you can alternatively use a numerical
vector in echo. The numbers in the vector indicate which expressions to echo
in your final document.

results

We will look at the results option in more detail in the next two chapters
(see especially Section 9.1). However, let’s briefly discuss the option value
hide. Setting results='hide' is almost the opposite of echo=FALSE. Instead
of showing the results of the code chunk and hiding the code, results='hide'
shows the code, but not the results. Warnings, errors, and messages will still
be printed.

warning, message, error

If you don’t want to include the warnings, messages, and error messages that
R outputs in the text of your presentation documents, just set the warning,
message, and error options to FALSE. They are set to TRUE by default.

cache

If you want to run a code chunk once and save the output for when you knit
the document again, rather than running the code chunk every time, set the
option cache=TRUE. When you do this the first time the document is knitted,
the chunk will be run and the output stored in a sub-directory of the working
directory called cache. When the document is subsequently knitted, the chunk
will only be run if the code in the chunk changes or its options change. This is

156 8 Statistical Modeling and knitr/R Markdown

very handy if you have a code chunk that is computationally intensive to run.
The cache option is set to FALSE by default. Later in this chapter (Section
8.4), we will see how to use the cache.vars function to cache only certain
variables created by a code chunk.

dependson

Cached chunks are only rerun when their code changes. Sometimes one chunk
will depend on the results from a prior chunk. In these cases, it is good to
rerun the chunk if the prior chunk one is also rerun. The dependson option
allows you to do this automatically. You can specify either a vector of the
labels for the chunks depended on or their numbers in order from the start of
the document. For example, dependson=c(2, 3) specifies that if the second
or third chunks are rerun, then the current chunk will also be rerun.

cache.extra

Sometimes to ensure reproducibility, it may be useful to rerun a chunk when
some other condition changes, such as when a new version of R is installed or
a dependent file changes. You can feed a list of conditions to cache.extra to
do this. For instance:

cache.extra=list(file.info(data.csv)$mtime, R.version)

Here we set two conditions under which the chunk will be rerun. The first
specifies that the chunk should be rerun whenever the data.csv file is modified.
The file.info function extracts information about the file and mtime gives
the last time that the file was modified. If this differs from when the chunk
was last run, then it will be run again. This is very useful for keeping your
cached chunks and the files they rely on in sync.

The second condition enabled by R.version reruns the chunk whenever the
R version or even the operating system changes. If you only want to rerun the
chunk when the version of R is different, then use R.version.string.

size

If you do want to print part or all of your code chunk into a LaTeX document,
you may also want to resize the text. To do this, use the size option. By
default, it is set to size='normalsize'. You can use any of the LaTeX font
sizes listed in Chapter 11.

8.1 Incorporating Analyses into the Markup 157

8.1.2 Showing code and results inline

Sometimes you may want to have R code or output show up inline with the rest
of your presentation document’s text. For example, you may want to include
a small chunk of stylized code in your text when you discuss how you did an
analysis. Or you may want to dynamically report the mean of some variable
in your text so that the text will change when you change the data. The knitr
syntax for including inline code is different for the LaTeX and Markdown
languages. We’ll cover both in turn.

LaTeX

Inline static code

There are a number of ways to include a code snippet inline with your text in
LaTeX. You can use the LaTeX function \texttt to have text show up in the
typewriter font commonly used in LaTeX-produced documents to indicate
that some text is code (I use typewriter font for this purpose in this book,
as you have probably noticed). For example, using \texttt{2 + 2} will give
you 2 + 2 in your text. Note that in LaTeX curly brackets ({}) work exactly
like parentheses in R, i.e. they enclose a function’s arguments.

However, the \texttt function isn’t always ideal, because your LaTeX com-
piler will still try to run the code inside of the function as if it were LaTeX
markup. This can be problematic if you include characters like the backslash \
or curly brackets {}. They have special meanings for LaTeX. The hard way to
solve this problem is to use escape characters (see Chapter 4). The backslash
is an escape character in LaTeX.

Probably the better option is to use the \verb function. It is equivalent to the
eval=FALSE option for full knitr code chunks. To use the \verb function, pick
some character you will not use in the inline code. For example, you could use
the vertical bar (|). This will be the \verb delimiter. Imagine that we want
to actually include \texttt in the text. We would type:

\verb|\texttt|

The LaTeX compiler will ignore almost anything from the first vertical bar up
until the second bar following \verb. All of the text in-between the delimiter
characters is put in typewriter font.3

3For more details, see the LaTeX Wikibooks page: https://en.wikibooks.org/wiki/
LaTeX/Paragraph_Formatting#Verbatim_text (accessed 21 September 2019). Also, for help
troubleshooting, see the UK List of Frequently Asked Questions: https://texfaq.org/FAQ-
verbwithin (accessed 21 September 2019).

https://en.wikibooks.org/wiki/LaTeX/Paragraph_Formatting#Verbatim_text
https://en.wikibooks.org/wiki/LaTeX/Paragraph_Formatting#Verbatim_text
https://texfaq.org/FAQ-verbwithin
https://texfaq.org/FAQ-verbwithin

158 8 Statistical Modeling and knitr/R Markdown

Inline dynamic code

If you want to dynamically show the results of some R code in your knitr
LaTeX-produced text you can use \Sexpr. This is a pseudo-LaTeX function;
it looks like LaTeX, but it is actually knitr syntax.4 Its structure is more like
a LaTeX function’s structure than knitr’s in that you enclose your R code in
curly brackets ({}) rather than the <<>>= . . . @ syntax you use for block
code chunks.

For example, imagine that you wanted to include the mean of a vector of river
lengths, 591, in the text of your document. The rivers numeric vector, loaded
by default in R, has the lengths of 141 major rivers recorded in miles. You can
use the mean() function to find the mean and the round() function to round
the result to the nearest whole number:

round(mean(rivers), digits = 0)

[1] 591

To have just the output show up inline with the text of your document, you
would type something like:

The mean length of 141 major rivers in North America is
\Sexpr{round(mean(rivers), digits = 0)} miles.

R code included inline with Sexpr is evaluated using current R options. So if
you want all of the output from Sexpr to be rounded to the same number of
digits, for example, it might be a good idea to set this in a code chunk with
R’s options() function.

Markdown

Inline static code

To include static code inline in an R Markdown (and regular Markdown)
document, enclose the code in single backticks (` . . . `). For example:

This is example R code: `MeanRiver <- mean(rivers)`.

produces:5

4The function directly descends from Sweave.
5The exact look of the text depends on the Cascading Style Sheets (CSS) style file you

are using. The example here was created with RStudio’s default style file.

8.2 Dynamically Including Modular Analysis Files 159

Inline dynamic code

Including dynamic code in the body of your R Markdown text is similar to
including static code. The only difference is that you put the letter r after the
first single backtick.

8.1.3 Dynamically including non-R code in code chunks

You are not limited to dynamically including just R code in your presentation
documents. knitr can run code from a variety of other languages including:
Python, Ruby, Bash, Julia, and Stan. All you have to do to dynamically in-
clude code from one of these languages is use the engine code chunk option to
tell knitr which language you are using. For example, to dynamically include
a simple line of Python code in an R Markdown document type:

```{r engine='python'}
print "Reproducible Research"
```

In the final HTML file you will get output that looks like Figure 8.1.6

FIGURE 8.1: Output from Python Engine in HTML Markdown

Many of the programming language values engine can take are listed in Table
8.1.

8.2 Dynamically Including Modular Analysis Files

There are a number of reasons why you might want to have your R source
code located in separate files from your markup documents even if you compile
them together with knitr.

6Again, this was created using RStudio’s default CSS style file.

160 8 Statistical Modeling and knitr/R Markdown

TABLE 8.1: A Selection of knitr engine Values

Value Programming Language

awk Awk
bash Bash shell
gawk Gawk
haskell Haskell
julia Julia
python Python
R R (default)

ruby Ruby
sas SAS
sh Bourne shell
stan Stan probablistic pro-

gramming language

First, it can be unwieldy to edit both your markup and long R source code
chunks in the same document, even with RStudio’s handy knitr code folding
and chunk management options. There are just too many things going on in
one document.

Second, you may want to use the same code in multiple documents, for exam-
ple an article and slide show presentation. It is nice to not have to copy and
paste the same code into multiple places. Instead, it is easier to have multiple
documents link to the same source code file. When you make changes to this
source code file, the changes will automatically be made across all of your
presentation documents. You don’t need to make the same changes multiple
times.

Third, other researchers trying to replicate your work might only be interested
in specific parts of your analysis. If you have the analysis broken into separate
and clearly labeled modular files that are explicitly tied together in the markup
file with knitr, it is easy for them to find the specific bits of code that they
are interested in.

8.2.1 Source from a local file

Usually, in the early stages of your research, you may want to run code stored
in analysis files located on your computer. Doing this is simple. The knitr
syntax is the same as for block code chunks. The only change is that instead
of writing all of your code in the chunk, you save it to its own file and use the

8.2 Dynamically Including Modular Analysis Files 161

source() function to access it.7 For example, in an R Markdown file we could
run the R code in a file called main-analysis.R from our example-project like
this:

```{r, include=FALSE}
# Run main analysis
source("/example-project/analysis/main-analysis.R")
```

Notice that we set the option include=FALSE. This will run the analysis and
produce objects created by the analysis code that can be used by other code
chunks, but the output will not show up in the presentation document’s text.

Sourcing a makefile in a code chunk

In Chapter 6 we created a GNU Makefile to organize our data gathering. You
can run makefiles every time you compile your presentation document. This
can keep your data, analyses, figures, and tables up-to-date. One way to do this
is to run the GNU makefile in an R code chunk with the system() function.
Perhaps a better way to run makefiles from knitr presentation documents is
to include the functions in a code chunk using the Bash engine. For example,
a Sweave-style code chunk for running the makefiles in our example project
would look like this:

<<r engine='bash', include=FALSE>>=
Change working directory to /example-project/analysis/Data
cd /example-project/analysis/Data/

Run makefile
make cleanMerge all

Change to working directory to /example-project/analysis/
cd /example-project/analysis/
@

Please see Chapter 6 for details on the make command arguments used here.

You can also use R’s source() function to run an R make-like data gathering
file. Unlike GNU Make, this will rerun all of the data gathering files, even if
they have not been updated. This may become very time consuming depending
on the size of your data sets and how they are manipulated.

One final note on including makefiles in your knitr presentation document

7We used the source() function in Chapter 6 in our make-like data gathering file.

162 8 Statistical Modeling and knitr/R Markdown

source code: it is important to place the code chunk with the makefile before
code chunks containing statistical analyses that depend on the data file it
creates. Placing the makefile first will keep the others up-to-date.

8.2.2 Source from a URL

If you are using GitHub or another service that uses secure URLs to host
your analysis source code files, you need to use the source_url() function
in the devtools package.8 For GitHub-based source code, we find the file’s
URL the same way we did in Chapter 5. Remember to use the URL for the
raw version of the file. I have a short script hosted on GitHub for creating
a scatterplot from data in R’s cars data set. The script’s shortened URL is
http://bit.ly/1D5p1w6.9 To run this code and create the scatterplot using
source_url(), type:

library(devtools)

Run the source code to create the scatter plot
source_url("http://bit.ly/1D5p1w6")

SHA-1 hash of file is ff75a88b90decfcaefc9903bbc283e1fc4cd2339

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Speed (mph)

S
to

p
p

in
g

 D
is

ta
n

c
e

 (
ft

)

You can also use the devtools function source_gist() in a similar way to
source GitHub Gists. Gists are a handy way to share code over the internet.
For more details, see: https://gist.github.com/.

8You can also make the replication code accessible for download and either instruct others
to change the working directory to the replication file or have them change the directory
information as necessary. You will need to do this with GNU makefiles like those included
with this book.

9The original URL is at https://raw.githubusercontent.com/christophergandrud/R
ep-Res-Examples/master/Graphs/SimpleScatter.R. This is very long, so I shortened it
using bitly. You may notice that the shortened URL is not secure. However, it does link to
the original secure URL.

http://bit.ly/1D5p1w6
https://gist.github.com/
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/SimpleScatter.R
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/SimpleScatter.R

8.3 Reproducibly Random: set.seed() 163

Similar to what we saw in Chapter 5 if you would like to use a particu-
lar version of a file stored on GitHub, include that version’s URL in the
source_url() call. This can be useful for replicating particular results. Link-
ing to a particular version of a source code file will enable replication even if
you later make changes to the file. To access the URL for a particular version
of a file, first click on the file on GitHub’s website, then click the History
button. This will take you to a page listing all of the file’s versions. Click on
the Browse Code button next to the version of the file that you want to use.
Finally, click on the Raw button to be taken to the text-only version of the
file. Copy this page’s URL and use it in source_url().

8.3 Reproducibly Random: set.seed()

If you include simulations in your analysis it is often a good idea to specify
the random number generator state you used. This will allow others to exactly
replicate your ‘randomly’—really pseudo-randomly—generated simulation re-
sults. Use the set.seed() function in your source code files or code chunks
to do this. For example, use the following code to set the random number
generator state10 and randomly draw 1,000 numbers from a standard normal
distribution with a mean of 0 and a standard deviation of 2.

Set seed as 125
set.seed(125)

Draw 1000 numbers
draw_1 <- rnorm(1000, mean = 0, sd = 2)

summary(draw_1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.211 -1.407 -0.104 -0.122 1.316 5.677

The rnorm() function draws the 1,000 simulations. The mean argument allows
us to set the normal distribution’s mean and sd sets its standard deviation.
Just to show you that we will draw the same numbers if we use the same seed,
let’s run the code again:

10See the Random help file for detailed information on R’s random number generation
capabilities by typing ?Random into your console.

164 8 Statistical Modeling and knitr/R Markdown

Set seed as 125
set.seed(125)

Draw 1000 numbers
draw_2 <- rnorm(1000, mean = 0, sd = 2)

summary(draw_2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.211 -1.407 -0.104 -0.122 1.316 5.677

8.4 Computationally Intensive Analyses

Sometimes you may want to include computationally intensive analyses that
take a long time to run as part of a knitr document. This can make writing
the document frustrating because it will take a long time to knit it each time
you make changes. There are at least two solutions to this problem: the cache
chunk option and makefiles. We discussed makefiles in Chapter 6, so let’s look
at how to work with the cache option.

When you set cache=TRUE for the code chunk that contains the analysis, the
code chunk will only be run when the chunk’s contents change11 or the chunk
options change. This is a very easy solution to the problem. It does have a
major drawback: other chunks can’t access objects created by the chunk or
use functions from packages loaded in it. Solve these problems by (a) having
packages loaded in a separate chunk and (b) save objects created by the cached
chunk to a separate RData file that can be loaded in later chunks (see Section
3.1.3 for information on saving to RData files).12

Imagine that in a cached code chunk we create an object called Sample. Then
in a later code chunk we want to use the hist() function to create a histogram
of the sample. In the cached code chunk, we save Sample to a file called
sample.RData.

11Note that the chunk will not be run if only the contents of a file that the chunk sources
are changed. Use the dependson option in cases where it is important to rerun a chunk when
a prior chunk changes.

12It’s true that when knitr caches a code chunk it saves the chunk’s objects to an .RData
file. However, it is difficult to load this file directly because the file name changes every time
the cached chunk is rerun.

8.4 Computationally Intensive Analyses 165

<<Sample, cache=TRUE>>=
Sample <- (n = 1000, mean = 5, sd = 2)

save(Sample, file = "sample.RData")
@

The latter code chunk for creating the histogram would go something like
this:13

<<Histogram>>=
load(file = "sample.RData")

hist(Sample)
@

cache.vars

If the code chunk you want to cache creates many objects, but you only want
to save a few of them, you can use knitr’s cache.vars chunk option. Simply
give it a character vector of the objects’ names that you want to save.

Chapter summary

In this chapter we covered in more detail key knitr syntax for including code
chunks in our presentation documents. This and other tools we learned in
this chapter are important for tying our statistical analyses directly to its
advertising, i.e. our presentation documents. In the next two chapters, we will
learn how to take the output from our statistical analysis and, using knitr,
present the results with dynamically created tables and figures.

13For reference, Sample was created by using the rnorm() function to take a random
sample of size 1,000 from a normal distribution with a mean of five and standard deviation
of two.

9
Showing Results with Tables

Graphs and other visual methods, discussed in the next chapter, can often
be more effective ways to present descriptive and inferential statistics than ta-
bles.1 Nonetheless, tables of parameter estimates, descriptive statistics, and so
on can sometimes be important tools for describing your data and presenting
research findings. See Ehrenberg (1977) and Gelman (2011) for information
on creating tables for effective communication.

Learning how to dynamically connect statistical results with tables in your
presentation documents aids reproducibility and can ultimately save you a
lot of time. Manually typing results into tables by hand is tedious, not very
reproducible, and can introduce errors.2 It’s especially tedious to retype tables
to reflect changes you made to your data and models. Fortunately, you don’t
actually need to create tables by hand. There are many ways to have R do
the work for you.

The goal of this chapter is for you to learn how to dynamically create tables for
your presentation documents written in LaTeX and Markdown. We will first
learn the simple knitr/R Markdown syntax we need to dynamically include
tables created from R objects. Then we will learn how to actually create the
tables. There are a number of ways to turn R objects into tables that can be
dynamically included in LaTeX or Markdown/HTML markup. In this chapter
we mostly focus on three tools for creating tables: the kable() function from
knitr, the xtable package, and the texreg package (Leifeld, 2017). kable() can
create tables from data frames for both LaTeX and Markdown/HTML docu-
ments. xtable does the same, but is much more customizable. texreg produces
publication-quality tables from objects containing statistical model results, or
model objects. It allows you to combine results from multiple models into one
table. Unfortunately texreg is less flexible with objects of classes it does not
support.3

1This is especially true of the small-print, high-density coefficient estimate tables that
are sometimes descriptively called ‘train schedule’ tables.

2For example, in a replication of Reinhart and Rogoff’s (2010) much cited study of eco-
nomic growth and public debt, Herndon et al. (2014) found a number of apparent transcrip-
tion errors. Analysis results in the original spreadsheets appear to not have been entered
into the paper’s tables accurately.

3These are not the only packages available in R for creating presentation document tables
from R objects. I personally really like the stargazer package (Hlavac, 2018). It has a similar

167

168 9 Showing Results with Tables

Warning: Automating table creation removes the possibility of adding er-
rors to the presentation of your analyses by incorrectly copying output, a big
potential problem in hand-created tables. However, it is not error-free. You
could easily create inaccurate tables with coding errors. So, as always, it is
important to ‘eyeball’ the output. Does it make sense? If you select a couple
values in the R output, do they match what is in the presentation document’s
table? If not, you need to go back to the code and see where things have gone
wrong. With that caveat, let’s start making tables.

9.1 Basic knitr Syntax for Tables

The most important knitr/rmarkdown chunk option for showing tables is
results. The results option can have one of four values:

• 'hide',

• 'asis',

• 'markup',

• 'hold'.

The value hide clearly hides the results of your code chunk from your presen-
tation document. hold collects all of the output and prints it at the end of
the chunk. To include tables created from R objects in your LaTeX or Mark-
down output you should set results='asis' or results='markup'. asis is
the simplest option as it writes the raw markup form of the table into the
presentation document, not as a highlighted code chunk, but as markup. It is
then compiled as table markup with the rest of the document. markup uses
an output hook to mark up the results in a predefined way. In this chapter,
we will work with examples using the asis option.

9.2 Table Basics

Before getting into the details of how to create tables from R objects, it
is useful to first learn how generic tables are created in LaTeX and Mark-
down/HTML. If you are not familiar with basic LaTeX or Markdown syntax,

syntax to texreg and is particularly good for showing results from multiple models estimated
using different model types in one table.

9.2 Table Basics 169

you might want to skip ahead to Chapters 11 and 12, respectively, before
coming back to learn about making tables in these languages.

9.2.1 Tables in LaTeX

Tables in LaTeX are usually embedded in two environments: the table and
tabular environments. What is a LaTeX environment in general?

A LaTeX environment is a part of the markup where special commands are ex-
ecuted. A simple environment is the center environment.4 Everything placed
in a center environment is, unsurprisingly, centered. Typing:

\begin{center}
This is a center environment.

\end{center}

creates the following text in the PDF output:

This is a center environment.

LaTeX environments all follow the same general syntax:

\begin{ENVIRONMENT_NAME}
...
...

\end{ENVIRONMENT_NAME}

You do not have to indent the contents of an environment. Indentations neither
affect how the document is compiled nor show up in the final PDF.5 It is
conventional to indent them, however, because it makes the markup easier to
read.

In this chapter we will learn about two types of environments you need for
tables in LaTeX. The tabular environment allows you to format the content
of a table. The table environment allows you to format a table’s location in
the text and its caption.

4For a comprehensive list of LaTeX environments, see https://latex.wikia.org/wiki
/List_of_LaTeX_environments.

5An aside: the tabbing environment is a useful way to create tabbed text in LaTeX. We
don’t cover this here though.

https://latex.wikia.org/wiki/List_of_LaTeX_environments
https://latex.wikia.org/wiki/List_of_LaTeX_environments

170 9 Showing Results with Tables

The tabular environment

The tabular environment allows you to create tables in LaTeX. Let’s work
through the basic syntax for a simple table.6

To begin a simple tabular environment type \begin{tabular}{TABLE_SPEC}.
The TABLE_SPEC argument allows you to specify the number of columns in
a table and the alignment of text in each column. For example, to create a
table with three columns, the first of which is left-justified and the latter two
center-justified we type:

\begin{tabular}{l c c}

The l argument creates a left-justified column, c creates a centered one. If
we wanted a right-justified column we would use r.7 Finally, we can add a
horizontal line between columns by adding a vertical bar | between the column
arguments.8 For example, to place a vertical line between the first and second
columns in our example table, we would type:

\begin{tabular}{l | c c}

Now let’s enter content into our table. We saw earlier how CSV files delimit
individual columns with commas. In LaTeX’s tabular environment, columns
are delimited with ampersands (&).9 In CSV tables, new lines are delimited
by starting a new line. In LaTeX tables you use two backslashes (\\).10 Here
is a simple example of the first two lines of a table:

\begin{tabular}{l | c c}
Observation & Variable1 & Variable2 \\
Subject1 & a & b \\

6For a comprehensive overview, see the LaTeX Wiki page on tables: https://en.wikib
ooks.org/wiki/LaTeX/Tables.

7You can also specify a column’s width by using m{WIDTH} instead. Be sure to load the
array package in the preamble for this to work. Using m will create a column of a specified
width that is vertically justified in the middle. For example, m{3cm} would create a column
with a width of 3 centimeters. Text in the column would automatically be wrapped onto
multiple lines if need be. You can replace the m with either p or b. p vertically aligns the
text at the top, b aligns it at the bottom.

8If you add two vertical bars (||), you will get two lines.
9If you want to include an ampersand in the text of your LaTeX document, you need to

escape it like this: \&.
10You can use two backslashes outside of the tabular environment as well to force a new

line. Also, to increase the space between the line, you can add a vertical width argument to
the double backslashes. For example, \[3cm] will give you a 3-centimeter gap between the
current line and the next one.

https://en.wikibooks.org/wiki/LaTeX/Tables
https://en.wikibooks.org/wiki/LaTeX/Tables

9.2 Table Basics 171

It is common to demarcate the row with a table’s column names, the first
row, with horizontal lines. A horizontal line also often visually demarcates a
table’s end. You can add horizontal lines in the tabular environment with
the \hline command.

\begin{tabular}{l | c c}
\hline
Observation & Variable1 & Variable2 \\
\hline \hline
Subject1 & a & b \\
\hline

Finally, we close the tabular environment with \end{tabular}. The full code
(with a few extra rows added) is:

\begin{tabular}{l | c c}
\hline
Observation & Variable1 & Variable2 \\
\hline \hline
Subject1 & a & b \\
Subject2 & c & d \\
Subject3 & e & f \\
Subject4 & g & h \\
\hline

\end{tabular}

This produces the following table:

Observation Variable1 Variable2
Subject1 a b
Subject2 c d
Subject3 e f
Subject4 g h

The table float environment

You might notice that the table we created so far lacks a title and is bunched
very closely to the surrounding text. In LaTeX we can create a table float
environment to solve this problem. Float environments allow us to separate
a table from the text, specify its location, and give it a caption.11 To begin
a table float environment, use \begin{table}[POSITION_SPEC]. The argu-
ment allows us to determine the location of the table. It can be set to h for here,

11We will see in the next chapter how to use figure floats as well.

172 9 Showing Results with Tables

TABLE 9.1: Example Simple LaTeX Table

Observation Variable1 Variable2
Subject1 a b
Subject2 c d
Subject3 e f
Subject4 g h

i.e. where the table is written in the text. It can also be t to place it on the top
of a page or b for the bottom of the page. To set a title for the table, use the
\caption command. LaTeX automatically determines the table’s number, so
you only need to enter the text. You can also declare a cross-reference key for
the table with the \label command.12 A table environment is closed with
\end{table}. Let’s see a full example.

\begin{table}[t]
\caption{Example Simple LaTeX Table}
\label{ExLaTeXTable}
\begin{center}

\begin{tabular}{l | c c}
\hline
Observation & Variable1 & Variable2 \\
\hline \hline
Subject1 & a & b \\
Subject2 & c & d \\
Subject3 & e & f \\
Subject4 & g & h \\
\hline

\end{tabular}
\end{center}

\end{table}

Notice that the tabular environment is further nested in the center envi-
ronment. This centers the table, while leaving the table’s title left-justified.
The final result is Table 9.1. One final tip: to have the caption placed at the
bottom rather than the top of the table in the final document, simply put the
caption command after the tabular environment is closed.

You can see how typing out a table in LaTeX gets very tedious very fast. For
all but the simplest tables, it is best to try to have R do the table-making
work for you.

12This command works throughout LaTeX. To reference the table type in the text of your
document \ref{KEY}, where KEY is what you set with the \label command. Use \pageref
to reference the page number.

9.2 Table Basics 173

9.2.2 Tables in Markdown/HTML

Now we will briefly look at the syntax for creating simple Markdown and
HTML tables before turning to learn how to have R create these tables for
us.

Markdown tables

Markdown table syntax, as with all Markdown syntax, is generally much sim-
pler than LaTeX’s tabular syntax. The markup is much more human readable.
Nonetheless, larger tables can still be tedious to create.

You do not need to declare any new environments to start creating a Mark-
down table. Just start typing in the content. Columns are delimited in Mark-
down tables with a vertical bar (|). Rows are started with a new line. To in-
dicate the head of the table, usually the row(s) containing the column names,
separate it from the body of the table with a row of dashes (e.g. -----). Here
is an example based on the table we created in the previous section:

Observation	Variable1	Variable2
Subject1 | a | b

Note that it is not necessary to line up the vertical bars. You just need to
have the same number of them on each row.

You can specify each column’s text justification using colons on the dashed row.
For example, this code will create the left-center-center justified formatted
table we made earlier:

Observation	Variable1	Variable2
Subject1 | a | b
Subject2 | c | d
Subject3 | e | f
Subject4 | g | c

To create a left-justified column, use a colon on only the left side of the dashes.

The ultimate look of a Markdown table is highly dependent on the CSS style
file you are using (see Chapter 12 for how to change your CSS style file). The
default RStudio CSS style as of late 2019 formats our table to look like this:

174 9 Showing Results with Tables

Using a different CSS style file,13 we can get something like this:

In basic Markdown, you can add a caption with the heading syntax (see
Section 12.1.3). In this example the three hashes (###) create the header:

Example Simple Markdown Table
Observation	Variable1	Variable2
Subject1 | a | b

producing something like this:

13The table was created using the Upstanding Citizen style from the program Marked.

9.2 Table Basics 175

HTML tables

The texreg() function that we will learn in the next section doesn’t create
tables formatted with Markdown syntax. It can create tables with HTML
syntax. This is useful for us because virtually any HTML markup can be
incorporated into a Markdown document. In fact, Markdown table syntax is
only a stepping stone for more easily producing tables with HTML syntax. So
it is useful to also understand the basic syntax for HTML tables.

HTML uses element “tags” to begin and end tables. The main element we use
to create tables is, well, the tables element. This is very similar to LaTeX’s
tabular environment. An HTML element generally begins with a start tag
and ends with an end tag. This is similar to LaTeX’s \begin{} and \end{}
commands. Begin tags are encapsulated in a greater than and less than sign
and include the element tag name (<TAG>). End tags are similar, but include
a forward slash like this </TAG>. The content of the element goes between the
start and end tags. For example:

<table>
. . .
. . .

</table>

As in LaTeX, you are not required to tab the content of a table element;

176 9 Showing Results with Tables

however, it does make the markup document easier to read and, as the number
of tags proliferates, easier to write.

You can specify element attributes inside of start tags.14 For example, to add
a border to the table, use: <table border="1">.15

Table rows are put inside of tr (table rows) element tags. Individual cells
are delimited with td (standard cell) tags. Here is what the first row of our
example table looks like in basic HTML:

<table>
<tr>
<td>Observation</td> <td>Variable1</td> <td><Variable2/td>

</tr>

We can further delimit a table’s header row(s) from its body with the thead
and tbody tags. Finally, before making a full table it’s useful to mention that
table captions can be included with caption tags. Let’s put this all together:

<table>
<thead>
<tr>
<td>Observation</td> <td>Variable1</td> <td>Variable2</td>

</tr>
</thead>
<tbody>
<tr>
<td>Subject1</td> <td>a</td> <td>b</td>

</tr>
<tr>
<td>Subject2</td> <td>c</td> <td>d</td>

</tr>
<tr>
<td>Subject3</td> <td>e</td> <td>e</td>

</tr>
<tr>
<td>Subject4</td> <td>f</td> <td>f</td>

</tr>
</tbody>

</table>

14These work like arguments in R in that they change how the element is evaluated.
15Whether or not a border appears is determined by whether or not the style sheet you

are using includes borders.

9.3 Creating Tables from Supported Class R Objects 177

As with Markdown tables, the ultimate appearance of the table is highly
dependent on the style files you use.

9.3 Creating Tables from Supported Class R Objects

Just as the write.csv() function turns an R data frame into a CSV formatted
text file, there are a number of methods in R to take an object, e.g. a matrix,
data frame, the output from a statistical analysis, and so on, and turn them
into LaTeX and HTML tables. kable(), xtable, and texreg each work most
easily with specific object classes that their designers explicitly supported.

9.3.1 kable for Markdown and LaTeX

kable() easily converts matrices and data frames into tables for Markdown,
HTML, and LaTeX among others. Let’s create a simple data frame:

library(knitr)

kable_ex <- data.frame(
Observation = c("Subject1", "Subject2",

"Subject3", "Subject4"),
Variable1 = c("a", "c", "e", "g"),
Variable2 = c("b", "d", "f", "c")

)

Then place this data frame into a kable() call:

kable(kable_ex, caption = "Example kable Table")

Beyond setting the table’s caption with caption, there are a few other alter-
ations that can be made with kable arguments. You can specify new column
and row names by passing character vectors to col.names and row.names,
respectively. These are very useful, as it can be difficult, or at least irritat-
ing, for your readers to try to decode the names you give to your data frame
rows and columns in R. Another useful argument is digits. This will round
numbers in the table to a specified number of digits after the decimal place.
To effectively convey your results, you should at least only include digits that
are significant in that they meaningfully vary in the data (Ehrenberg, 1977,
281).

178 9 Showing Results with Tables

You can also change the markup language that the table is created in using
the format argument. For example, to create a LaTeX formatted table, use
format = 'latex'. In general, you do not need to specify the format if you
are using knitr or rmarkdown to include the table in a presentation document.
This will be done automatically.

9.3.2 xtable for LaTeX and HTML

While kable() allows you to quickly create simple tables, it can only do so
from matrices and data frames. It also has limited customizability. The xtable
package can create more customizable tables from a wider variety of R objects,
including statistical model objects.

Different R statistical model estimation commands can produce model objects
of different classes. For example, the lm() (linear model) function creates
model summaries of the lm class. Let’s create a simple linear regression using
the swiss data frame and lm(). This data frame is included with R by de-
fault. The simple linear regression model we are going to make has the swiss
variable Examination as the dependent variable and Education as the only
independent variable.16

Fit simple linear regression model
M1 <- lm(Examination ~ Education, data = swiss)

Return class
class(M1)

[1] "lm"

By using the class function, we can see that M1 is of the lm class. M1 con-
tains items estimated by the linear regression model17 such as the coefficient
estimates and their standard errors. To get a summary of a model object’s
contents, use the summary() function like this:

summary(M1)

##
16For a description of these variables, type ?swiss into the console.
17If you are unfamiliar with the syntax of R statistical estimation models, the previous

code might be confusing. In general ‘response’ (𝑌) variables are written first and are sep-
arated from the ‘explanatory’ (𝑋) variables by a tilde (\sim). Crawley (2005, 107) notes
that you can read 𝑌 ∼ 𝑋 as ‘𝑌 is modeled as a function of 𝑋’. In later examples we will see
that individual explanatory variables are generally separated by plus signs (+), indicating
that they are included in the model, not that they are added. For more information, see
Crawley (2005, Ch. 7).

9.3 Creating Tables from Supported Class R Objects 179

Call:
lm(formula = Examination ~ Education, data = swiss)
##
Residuals:
Min 1Q Median 3Q Max
-10.932 -4.763 -0.184 3.891 12.498
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.1275 1.2859 7.88 5.2e-10 ***
Education 0.5795 0.0885 6.55 4.8e-08 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 5.77 on 45 degrees of freedom
Multiple R-squared: 0.488, Adjusted R-squared: 0.476
F-statistic: 42.9 on 1 and 45 DF, p-value: 4.81e-08

To find a full list of object classes that xtable supports, type methods(xtable)
into the R Console after you have loaded the package.

xtable for LaTeX

Let’s look at how to create LaTeX tables with xtable by creating a table
summarizing the estimates from the M1 model object.

<<results=asis, echo=FALSE>>=
library(xtable)

Create LaTeX table from M1 and show the output markup
xtable(M1,

caption = "Linear Regression, DV: Exam Score",
label = "BasicXtableSummary",
digits = 1)

@

When included in an R Sweave-style LaTeX document, this code will create
a table exactly like Table 9.2.

Let’s go through this code, working from the outside in. First you’ll no-
tice that we’ve set two knitr code chunk options. As we discussed earlier,
results='asis' allows us to include the LaTeX formatted table created by
xtable. The next option echo=FALSE hides the code from being shown in our
final document. The xtable() function creates the summary table of our

180 9 Showing Results with Tables

M1 model object. Not only does it produce both complete tabular and table
environments, but also through the caption and label arguments it automat-
ically adds in the table’s title and cross-reference label, respectively. Finally,
notice that I added the digits = 1 argument. As in kable(), this specifies
that I want numbers in the table to be rounded to one decimal digit.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.1 1.3 7.9 0.0
Education 0.6 0.1 6.5 0.0

TABLE 9.2: Linear Regression, DV: Exam Score

The caption is printed below the table by default.

xtable for Markdown/HTML

We can use xtable and the print.xtable() function18 to also create tables for
Markdown and HTML documents. The xtable function produces, unsurpris-
ingly, xtable() class objects. We can run these through the print() func-
tion and add arguments to customize how the table is formatted. By default,
print.xtable()’s type argument is set to "latex". To create an HTML ta-
ble that can be inserted into Markdown and HTML documents, set the type
argument from "latex" to "html". For example, to create an HTML version
of the table summarizing M1 and include it in an R Markdown document,
type:

```{r results='asis', echo=FALSE}
library(xtable)

# Create an xtable object from M1
m1_table <- xtable(M1,

caption = "Linear Regression, DV: Exam Score",
label = "BasicXtableSummary",
digits = 1)

# Create HTML summary table of m1_table
print.xtable(m1_table, type = "html", caption.placement = "top")
```

If you intend to include multiple tables in your R Markdown document, you
will want to set all of the tables to be printed in HTML. You can place
options("xtable.type" = "html") in a code chunk near the beginning of

18Note: you can abbreviate print.xtable() as print().

9.3 Creating Tables from Supported Class R Objects 181

your document.19 This makes it so that you don’t need to include type =
"html" every time you use print.

Notice in the previous code example that we also added the
caption.placement = "top" argument. This will move the caption
from the bottom of the table, as it is in Table 9.2, to the top. See the xtable
package documentation20 for the full list of print.xtable() options.

9.3.3 texreg for LaTeX and HTML

kable() and xtable are limited when it comes to creating tables from statistical
model objects. kable only works with matrices and data frames. xtable is
easiest when working with only one model object at a time. Furthermore, by
default these tools do not create output tables that present estimates from
multiple statistical models in the style used by many prominent academic
journals. The texreg package is very useful for creating these types of tables.
It also supports more model object types than xtable.

texreg for LaTeX

Imagine we want to show the estimates from a number of nested regression
models in LaTeX as the next table. For example, to estimate nested regression
models from the remaining variables in the swiss data set, we type:

Estimate nested regression models
M2 <- lm(Examination ~ Education + Agriculture, data = swiss)

M3 <- lm(Examination ~ Education + Agriculture + Catholic,
data = swiss)

M4 <- lm(Examination ~ Education + Agriculture + Catholic +
Infant.Mortality, data = swiss)

M5 <- lm(Examination ~ Education + Agriculture + Catholic +
Infant.Mortality + Fertility, data = swiss)

We can now include these model objects in one LaTeX table with texreg. Re-
member to include results='asis' in the code chunk head.

19Of course, you will probably want to use the include=FALSE knitr option with this code
chunk.

20https://cran.r-project.org/web/packages/xtable/xtable.pdf

https://cran.r-project.org/web/packages/xtable/xtable.pdf

182 9 Showing Results with Tables

TABLE 9.3: Nested Estimates Table with texreg

Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) 10.13∗∗∗ 19.72∗∗∗ 18.54∗∗∗ 18.66∗∗ 24.57∗∗

(1.29) (3.20) (2.64) (5.84) (8.24)
Education 0.58∗∗∗ 0.36∗∗ 0.42∗∗∗ 0.42∗∗∗ 0.33∗

(0.09) (0.10) (0.09) (0.09) (0.13)
Agriculture −0.14∗∗ −0.07 −0.07 −0.08

(0.04) (0.04) (0.04) (0.04)
Catholic −0.08∗∗∗ −0.08∗∗∗ −0.07∗∗

(0.02) (0.02) (0.02)
Infant Mortality −0.01 0.10

(0.23) (0.25)
Fertility −0.10

(0.09)
R2 0.49 0.59 0.73 0.73 0.73
Adj. R2 0.48 0.57 0.71 0.70 0.70
Num. obs. 47 47 47 47 47
RMSE 5.77 5.25 4.30 4.36 4.35
∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05

library(texreg)

Create custom coefficient names
cust_coef <- c('(Intercept)', 'Education', 'Agriculture',

'Catholic', 'Infant Mortality', 'Fertility')

Create nested regression model table
texreg(list(M1, M2, M3, M4, M5),

caption = 'Nested Estimates Table with \\emph{texreg}',
caption.above = TRUE,
label = 'Basic_texregTable',
custom.coef.names = cust_coef)

Notice that we placed the model objects in a list when we called texreg().
texreg() automatically created the table and tabular environments and by
default centers the table.21 We added a caption and reference label with the
caption and label arguments, respectively. By default, the caption is placed
below the table, so we used caption.above = TRUE to place it on top. Finally,
we created custom coefficient names with custom.coef.names that are a bit

21Use the center = FALSE argument to override centering. If you would like to only cre-
ate the tabular environment, use the argument table = FALSE. Creating your own table
environment can be useful in situations where you want more customizability.

9.3 Creating Tables from Supported Class R Objects 183

tidier than the variable names in our R data set. Your readers will appreciate
easily discernible coefficient names.

In the LaTeX caption, you’ll notice \\emph{texreg}. In LaTeX the emph
command italicizes text (we’ll see this again in Chapter 11). We added an
additional escape character \ so that R would not try to interpret the e
and instead feed it to LaTeX. By default, texreg() uses stars = c(0.001,
0.01, 0.05) to determine at what p-values to display statistical significance
stars. This is the same as the lm model summary default showing three sets of
statistical significance stars. You can define the significance levels by assigning
a different numeric vector to the stars argument.

There are many other changes you can make to tables created with texreg.
You can change the column and coefficient names, determine what type of
standard errors to show, and so on. For the full list of arguments, see the help
file by typing ?texreg into your R Console.

texreg for HTML

You can also use the texreg package to create tables in Markdown/HTML
documents. Instead of the texreg function, use htmlreg. The syntax is largely
similar, though arguments relating to LaTeX are not available, while others
relating the HTML are. Here is a simple example:

htmlreg(list(M1, M2, M3, M4, M5),
caption = 'Nested Estimates Table in HTML Document',
caption.above = TRUE, custom.coef.names = cust_coef)

Notice that we did not include the label argument as this is not available in
HTML. The resulting table looks like this:

184 9 Showing Results with Tables

9.3.4 Fitting large tables in LaTeX

Sometimes you may have large tables that are difficult to fit onto a page in
LaTeX. There are a number of ways to adjust tables so that they fit on the
page.

LaTeX landscape tables

If your LaTeX table is very wide, e.g. because it shows results from many
estimation models, you can use LaTeX’s lscape package to create landscape
formatting environments. Rather than orienting the text of a page so that it
is in profile (a long page), a landscape environment turns it 90 degrees so
that it has a landscape orientation (a wide page).

To use the lscape package, first place \usepackage{lscape} in your La-
TeX document’s preamble. Then begin a landscape environment with
\begin{landscape} where you would like it located in the text. Then place
the table environment information and knitr code for creating the table. Fi-
nally, close the landscape environment with \end{landscape}.

9.3 Creating Tables from Supported Class R Objects 185

LaTeX scalebox for tables

In addition, the scalebox command from the graphics package could be useful
for fitting large tables onto a PDF page. This command expands or shrinks
the text in the table. texreg actually has a scalebox argument. If you use
scalebox = 0.5, it will halve the size of the table; scalebox = 2 doubles it.

More generally, to rescale a table use:

\scalebox{HORIZONTAL_SCALE}[VERTICAL_SCALE]{TABLE}

HORIZONTAL_SCALE is how much to scale the table horizontally.
VERTICAL_SCALE is how much to scale vertically and TABLE is the table
or R code chunk to create the table.

9.3.5 xtable with non-supported class objects

The kable, texreg, and xtable packages are very convenient for model objects
they know how to handle. With supported class objects, the functions in these
packages know where to look for the vectors containing the things—coefficient
names, standard errors, and so on—that they need to create tables. With
unsupported classes, however, they don’t know where to look for these things.
Luckily, there is a work-around. You tell xtable() where to find elements
you want to include in your table. xtable() can handle matrix and data
frame class objects. The rows of these objects become the table rows and the
columns become the table columns. So, to create tables with non-supported
class objects you need to:

1. find and extract the information from the unsupported class object
that you want in the table,

2. convert this information into a matrix or data frame where the rows
and columns of the object correspond to the rows and columns of
the table that you want to create,

3. use xtable with this object to create the table.

Imagine that you want to create a results table showing the covariate names,
coefficient means, and quantiles for marginal posterior distributions estimated
from an linear regression using the brms package (Bürkner, 2020) and data
from the swiss data frame. Let’s fit the model:

library(brms)

Fit model

186 9 Showing Results with Tables

linear_brms <- brm(Examination ~ Education,
data = swiss,
family = gaussian(link = "identity"),
refresh = 0)

Find linear_brms's class
class(linear_brms)

[1] "brmsfit"

Note: I included refresh = 0 to suppress output about the model fitting
process.

Using the class() function, we see that the model output object in lin-
ear_brms is of the brmsfit class. This class is not supported by xtable. If
you try to create a table summarizing the estimates in linear_brms_table,
you will return an error telling you the object’s class is not supported.

With unsupported class objects, you have to create the summary yourself and
extract the elements that you want from it manually. A good knowledge of
vectors, matrices, and component selection is very handy for this (see Chapter
3).

First, create a summary of your output object linear_brms:

linear_brms_summary <- summary(linear_brms)

Registered S3 method overwritten by 'xts':
method from
as.zoo.xts zoo

This creates a new object of the class brmssummary. We’re still not there yet as
this object contains not just the covariate names and so on, but also informa-
tion we don’t want to include in the results table, like the estimation formula.
The second step is to extract a matrix from inside linear_brms_summary
called summary with the component selector ($). Remember that to find the
components of an object, use the names() function.

names(linear_brms_summary)

[1] "formula" "data.name" "group" "nobs"
[5] "ngrps" "autocor" "prior" "algorithm"
[9] "chains" "iter" "warmup" "thin"
[13] "sampler" "fixed" "spec_pars" "cor_pars"

The fixed matrix is where the things we want in our table are located. I find

9.3 Creating Tables from Supported Class R Objects 187

it easier to work with data frames, so let’s also convert the matrix into a data
frame.

linear_brms_summary_df <- data.frame(linear_brms_summary$fixed)

Here is what the model summary data frame looks like:

linear_brms_summary_df

Estimate Est.Error l.95..CI u.95..CI Rhat
Intercept 10.1173 1.29142 7.6324 12.641 1.002
Education 0.5802 0.08866 0.4035 0.756 1.000
Bulk_ESS Tail_ESS
Intercept 3687 2960
Education 3584 2840

Now we have a data frame object xtable can handle. After a little cleaning up
(see the chapter’s Appendix for more details) you can use xtable as before to
create Table 9.4.

TABLE 9.4: Coefficient Estimates Predicting Examination Scores in Swiss
Cantons (1888) Found Using Bayesian Linear Regression

2.5% 50% 97.5%
Intercept 7.63 10.12 12.64

Education 0.40 0.58 0.76

It may take some hunting to find what you want, but a similar process can be
used to create tables from objects of virtually any class.22 Hunting for what
you want can be easier if you look inside of objects by clicking on them in
RStudio’s Environment tab.

9.3.6 Creating variable description documents with xtable

You can use xtable to create a table describing variables in your data set and
insert these into Markdown documents created with the concatenate and print
(cat) command (see Section 4.4). This is useful because our data so far has
been stored in plain-text files. Unlike binary Stata or SAS data files, plain-text
data files do not include variable descriptions.

Imagine that we want to create a Markdown file with a table describing the
variables from the swiss data frame. First we will create two vectors: one for
the variable names and the other for the variable descriptions.

22This process can also be useful for creating graphics as we will see in Chapter 10.

188 9 Showing Results with Tables

Create variable vector from column names
Variable <- names(swiss)

Create variable description vector
Description <- c("common standardized fertility measures",

"% of males involved in agriculture as occupation",
"% draftees receiving highest mark on army examination",
"% education beyond primary school for draftees",
"% catholic",
"% live births who live less-than 1 year"

)

In the first line we use the names() function to create a vector of the swiss
data frame’s column names. Then we create a vector of descriptions with the
combine function (c()). Now we can combine these vectors into a matrix and
use it to create an HTML table.

Combine Variable and Description variables into a matrix
descriptions_bound <- cbind(Variable, Description)

Create an xtable object from descriptions_bound
descriptions_table <- xtable(descriptions_bound)

Format table in HTML
descript_table <- print.xtable(descriptions_table, type = "html")

Finally, we can use cat() to create our Markdown variable description file.

Create variable description file
cat("# Swiss Data Variable Descriptions \n",

"### Source: Mosteller and Tukey, (1977) \n",
descript_table,
file = "swiss-variable-descriptions.md"

)

The first part of the cat() function here is the title of the document. As we
will see in Chapter 12, hashes (#) create headers. \n creates a new line in the
Markdown document. The next line is information on the swiss data frame’s
source. We then include the HTML table in the descript_table object and save
it to a file called swiss-variable-descriptions.md.

It is convenient to include the creation of this table in your data gathering
makefiles and have it saved into the same directory as your data. This way
it will be easy to update as you update your data and easy to find. If you

9.3 Creating Tables from Supported Class R Objects 189

are storing your data on GitHub, it will automatically render the variable
description Markdown file and make it easy for others to read. See this book’s
makefile example for more information: https://bit.ly/2UtvOys.23

Chapter summary

In this chapter, we have learned how to take the results from our statistical
analyses and other information from our data and dynamically present it
in LaTeX and Markdown documents with knitr/R Markdown. In the next
chapter, we will do the same thing with figures.

Appendix

Source code for cleaning linear_brms_summary_df and using it to create a
LaTeX table:

library(dplyr)
library(xtable)

Change posterior summary variable names
linear_brms_summary_df <- rename(linear_brms_summary_df,

`2.5%` = `l.95..CI`)
linear_brms_summary_df <- rename(linear_brms_summary_df,

`50%` = Estimate)
linear_brms_summary_df <- rename(linear_brms_summary_df,

`97.5%` = `u.95..CI`)

Reorder variables and remove the Est. Error
linear_brms_summary_df <- linear_brms_summary_df[,

c("2.5%", "50%", "97.5%")]

Create table
xtable(linear_brms_summary_df,

caption = "Coefficient Estimates Predicting
Examination Scores in Swiss Cantons (1888)
Found Using Bayesian Linear Regression",
label = "CoefEstTable")

23The long URL is: https://github.com/christophergandrud/rep-res-book-v3-exampl
es/tree/master/data.

https://bit.ly/2UtvOys
https://github.com/christophergandrud/rep-res-book-v3-examples/tree/master/data
https://github.com/christophergandrud/rep-res-book-v3-examples/tree/master/data

190 9 Showing Results with Tables

Create table
xtable(linear_brms_summary_df,

caption = "Coefficient Estimates Predicting
Examination Scores in Swiss Cantons (1888)
Found Using Bayesian Normal Linear Regression")

Note that the new variable names are in quotation marks, in contrast to the
example from Chapter 7. The quotation marks allow us to specify a name that
begins with a number and has special characters like the percent sign.

10
Showing Results with Figures

One of the main reasons that many people use R is to take advantage of its
comprehensive and powerful set of data visualization tools. Visually displaying
information with graphics is often a much more effective way of presenting
both descriptive statistics and analysis results than the tables we covered in
the last chapter.1

Nonetheless, dynamically incorporating figures with knitr/R Markdown has
many of the same benefits as dynamically including tables, especially the
ability to have data set or analysis changes automatically cascade into your
presentation documents. The basic process for including figures in knitted
presentation documents is also very similar to including tables, though there
are some important extra considerations we need to make to properly size the
figures and be able to include interactive visualizations in our presentation
documents.

In this chapter we will first learn how to include non-knitted graphics in LaTeX
and Markdown documents before turning to dynamically knit R graphics into
presentation documents. In the remainder of the chapter, we will look at how
to actually create graphics with R including some of the fundamentals of R’s
default graphics package, as well as the ggplot2 (Wickham et al., 2019a) and
googleVis (Gesmann and de Castillo, 2019) packages. In each case we will focus
on how to include the figures created by these packages in knitted presentation
documents.

1There are, of course, a number of exceptions to this rule of thumb. van Belle (2008,
Ch. 9) argues that a few numbers should be listed in a sentence, many numbers shown
in tables, and relationships between numbers are best shown with graphs. Similarly, Tufte
(2001) argues that tables tend to outperform graphics for displaying 20 or fewer numbers.
Graphics often outperform tables for showing larger data sets and relationships within the
data.

191

192 10 Showing Results with Figures

10.1 Including Non-knitted Graphics

Understanding how knitr/rmarkdown dynamically include figures is easier if
you understand how figures are normally included in LaTeX and Markdown.
Unlike a word processing program like Microsoft Word, in LaTeX, Markdown,
HTML, and other markup languages you don’t copy and paste figures into
your document. Instead, you link to an image file outside of your markup
document. Typically these image files are in formats such as PDF, PNG, and
JPEG.2

While you lose the flexibility of drag and drop, there are advantages to this
method of including graphics. The first is that whenever the image files are
changed, the changes are updated in the final presentation document when
it is compiled, no recopying and pasting. The second advantage is that the
images are sized and placed with the markup code rather than pointing and
clicking. This is tedious at first, but saves considerable time and frustration
when a document becomes larger. It also makes it easy to consistently format
multiple images in a document.

If the image files are in the same directory as the markup document, we don’t
need to specify the image’s full file path, only its name. If they are in another
directory, we need to include additional file path information. Remember to
use relative paths when possible. In this section we will learn how to include
graphics files in documents created with LaTeX and Markdown.

10.1.1 Including graphics in LaTeX

The main way to include graphics (graphs, photos, and so on) in LaTeX doc-
uments is to use the includegraphics function to link to image files. To
have the full range of features for includegraphics, make sure to load the
graphicx package in your document’s preamble. Imagine that we wanted to

2PDF: Portable Document Format, PNG: Portable Network Graphic, JPEG: Joint Pho-
tographic Experts Group.
A quick note about file formats: By default, knitr creates PDF-formatted figure files when
knitting R LaTeX documents. These figures, generally built with vector graphics, allow you
to zoom in on them by any amount without them becoming pixelated. This means that
your images will be crisp in PDF presentation documents. For Markdown documents, knitr
creates PNG images. PNG images are usually relatively high quality and can be rendered
directly on websites, unlike PDFs. JPEG formatted files usually take up less disk space than
PDF and PNG files. However, their quality is also worse and can often look very pixelated.
For more information, Wikipedia has a comprehensive comparison of graphics file formats
at: https://en.wikipedia.org/wiki/Comparison_of_graphics_file_formats.

https://en.wikipedia.org/wiki/Comparison_of_graphics_file_formats

10.1 Including Non-knitted Graphics 193

include an image of butterflies stored in a file called HeliconiusMimicry.png
in a LaTeX-produced document.3 We type:

\includegraphics[scale=0.8]{HeliconiusMimicry.png}

In the square brackets, you’ll notice scale=0.8. This formats the image to be
included at 80 percent of its actual size. You can use other options such as
height to specify the height, width to specify the width, and angle to specify
the angle at which to rotate the image. You can add more than one option if
they are separated by commas. Rather than hard coding the width in exact
centimeters, you can determine its width as a proportion of the text width
using \textwidth.4 For example, to set our image at 80 percent of the text
width we can type:

\includegraphics[scale=0.8\textwidth]{HeliconiusMimicry.png}

figure float environment

Most often you will want to include LaTeX figures in a figure float envi-
ronment. The figure environment works almost exactly the same way as the
table environment we saw in the last chapter. It allows you to separate the
figure from the text, add a caption, and label the figure. We begin the environ-
ment with \begin{figure}[POSITION_SPEC]. POSITION_SPEC can have the
same values as we saw earlier with tables in Chapter 9. We can then include a
caption and label function. The environment is closed with \end{figure}.
For example, to create Figure 10.1 exactly as is, I used the following code:5

\begin{figure}[ht]
\begin{center}

\includegraphics{HeliconiusMimicry.png}
\end{center}

\caption{An Example Figure in LaTeX}
{\scriptsize{Image source: \cite{meyer2006}}}
\label{ExampleLaTeXFigure}

\end{figure}

Notice that after the call to end the center environment we include
3The image used here is from Meyer (2006).
4Note there are a number of other ways to set the size of a figure relative to a page

element. See the LaTeX Wiki Book for more details: https://en.wikibooks.org/wiki/La
TeX/Page_Layout.

5For simplicity, this code does not include the full image’s actual file path.

https://en.wikibooks.org/wiki/LaTeX/Page_Layout
https://en.wikibooks.org/wiki/LaTeX/Page_Layout

194 10 Showing Results with Figures

{\scriptsize{Source: \cite{meyer2006}}}. This includes a note in the
figure environment giving the image’s source. The note moves with the figure
and is separate from the text. The scriptsize function transforms the text
to smaller than normal size font. See Chapter 11 for more details on LaTeX
font sizes. The function \cite{meyer2006} inserts a citation from the bibli-
ography for Meyer (2006). We will also discuss bibliographies in more detail
in Chapter 11.

FIGURE 10.1: An Example Figure in LaTeX
Image source: Meyer (2006)

10.1.2 Including graphics in Markdown/HTML

Markdown has a similar function as LaTeX’s includegraphics. It goes like
this: ![ALT_TEXT](FILE_PATH). This syntax may seem strange now, but it will
hopefully make more sense when we cover Markdown hyperlinks in Chapter
12. This is what it is intended to imitate. ALT_TEXT refers to HTML’s alt
(alternative text) attribute. This should be a very short description of the
image that will appear if it fails to load in a web browser. FILE_PATH specifies
the image’s file path.6 Here is an example using the image we worked with
before.

![ButterflyImage](HeliconiusMimicry.png)

6You can also include a title in quotation marks after the file path. This specifies the
HTML title attribute. However, this attribute does not create a title for the image in the
way that caption does for LaTeX float figures. Instead, it creates a tooltip, a small box that
appears when you place your cursor over the image. Specifying descriptive alt text is very
useful for screen readers that help visually impaired people access web content.

10.2 Including Non-knitted Graphics 195

Note that the file path can be a URL. You may, for example, store an image
on GitHub and use its raw URL to link to it in the Markdown document.7

Markdown does not easily include ways to resize or reposition an image. If
you want to resize or reposition your image, it is often most straightforward to
use HTML markup. Probably the simplest way to include images with HTML
is by using the img (image) element tag. To create the equivalent of what we
just did in Markdown with HTML, type:

The src (script) attribute specifies the file path. To change the width and
height of the image, use the width and height attributes. For example:

<img src="HeliconiusMimicry.png" alt="ButterflyImage"
width="100px" height="100px">

creates an image that is 100 pixels (px) wide by 100 pixels high.8 It is also
possible to specify the alignment of figures in Markdown with a custom CSS
style file. I don’t cover how to do that here.

10.1.3 Non-knitted graphics with knitr/rmarkdown

Now that we’ve seen how LaTeX, Markdown, and HTML include non-
dynamically generated graphics, it raises a question: how do we include these
graphics in a document that we intend to use R Markdown to compile to more
than one of these formats? knitr includes the include_graphics() function
just for this purpose.

For example, in a code chunk place:

```{r fig.cap="An Example Figure"}
knitr::include_graphics('HeliconiusMimicry.png')
```

Now the figure will be included regardless of which markup language we com-
pile to. Notice the code chunk option fig.cap. In the next section, we discuss
this type of knitr options in detail.

7Use the URL for the raw version of the file for images stored on GitHub.
8A pixel is the smallest discrete part of images displayed on a screen. See the “pixel”

Wikipedia page for more details: https://en.wikipedia.org/wiki/Pixel.

https://en.wikipedia.org/wiki/Pixel

196 10 Showing Results with Figures

10.2 Basic knitr/rmarkdown Figure Options

In addition to including precompiled images with the include_graphics()
function, knitr, and by extension rmarkdown, allows us to combine a figure’s
creation by R with its inclusion in a presentation document. They are tied
together and update together. We use knitr chunk options to specify how the
figure will look in the presentation document and where it will be saved. We
can also use them to specify captions. Let’s learn some of the more important
chunk options for figures.

10.2.1 Chunk options

fig.path

When you use knitr to create and include figures in your presentation docu-
ments, it (1) runs the code you give it to create the figure, (2) automatically
saves it into a particular directory,9 and (3) includes the necessary LaTeX or
Markdown code to include the figure in the final presentation document. By
default, knitr saves images into a folder (it creates) called figure located in
the working directory.10 You can tell knitr where to save the images with the
fig.path option. Simply use the file path naming conventions suitable for
your system and include the new path in quotation marks.

Note if you use rmarkdowm to compile to HTML, by default the graphic will
not be saved in a separate file, but instead converted to a format that is
embedded directly in the HTML markup document.

out.height

To set the height that a figure will be in the final presentation document, use
the out.height option. In R LaTeX documents, you can set the width using
centimeters, inches, or as a proportion of a page element. In R Markdown
documents, you use pixels to set the height. For example, to set a figure’s
height in an R Markdown document to 200 pixels, use out.height='200px'.

9If a code chunk creates more than one figure, knitr automatically saves each into its
own file in the same directory.

10File names are based on the code chunk label where they were created.

10.2 Basic knitr/rmarkdown Figure Options 197

out.width

Similarly, we can set the width of a knitr created figure using the out.width
option. The same rules apply as with out.width. For example, to have a
figure shown up at 80 percent of the text width in an R LaTeX document, use:
out.width='0.8\\textwidth'. Notice that there are two backslashes before
textwidth. As we saw earlier, the LaTeX function only has one. However,
all knitr code chunk options must be written as they would be in R. We
need to escape the backslash with the backslash escape character, i.e. use two
backslashes.

fig.align

You can set a knitted figure’s alignment using fig.align. The option can be
set to left, center, or right. To center a figure, add fig.align='center'.

fig.cap

If your document compiles to LaTeX, you can use the fig.cap option to set
the figure’s caption as we did in the example above.

Other figure chunk options

The previous options are probably the most commonly used ways of adjusting
figures with knitr. However, knitr has many other chunk options to help you
adjust your figures so that they are incorporated into your presentation docu-
ments the way that you want. For example, the option fig.lb allows you to
set the label.11 As we will see below, you can use the dev option to choose the
figure’s output file format, e.g. PDF, PNG, JPEG. Please see the official knitr
code chunk options webpage for more information on figure chunk options:
https://yihui.name/knitr/options/#chunk_options.

10.2.2 Global options

If you want all of your figures to share the same options—e.g. same height
and alignment—you can set global figure options at the beginning of your
document with opts_chunk$set. Imagine that we are making an R LaTeX
Sweave-style document and want all of our figures to be center aligned and 80
percent of the text width. We type:

11In this chapter we will set this option in the markup rather than the code chunk. I prefer
doing this because knitr options need to be on the same line and so they can sometimes
result in very long lists of options that are difficult to read.

https://yihui.name/knitr/options/#chunk_options

198 10 Showing Results with Figures

opts_chunk$set.(fig.align = "center",
out.width = "0.8\\textwidth")

You can also set some global figure options, such as fig_height and
fig_width in your rmarkdown YAML header.

10.3 Knitting R’s Default Graphics

R’s graphics package, loaded by default, includes functions to create numerous
plot types. These include hist() for histograms, pairs() for scatterplot ma-
trices, boxplot() for creating boxplots, and the versatile plot() for creating
x-y plots, including scatterplots and bar charts depending on the data’s type.

There are many useful resources for learning how to fully utilize R’s default
graphics capabilities. These include Paul Murrell’s (2011) comprehensive R
Graphics book. The Cookbook for R12 and Quick-R13 websites are also helpful.
Winston Chang (2012), the maintainer of the Cookbook for R, also has a
full book devoted to creating R graphics. Kieran Healy (2018) is a strong
intoduction to data visualisation in general with R examples.

In this section we are going to see how to include R’s default graphics in our
LaTeX and Markdown presentation documents. We will also see an example
of how to source the creation of a graph from a segmented analysis file. Most
of R’s default graphics capabilities create static graphics. They are not anima-
tions or interactive. The discussion in this section is exclusively about using
static graphics with knitr/rmarkdown. Later in the chapter, we will discuss
how to knit interactive graphics.

Let’s look at an example we first saw at the end of Chapter 8. Remember
that we accessed an R source code file stored on GitHub to create a simple
scatterplot of cars’ speed and stopping distances using R’s cars data set, which
is loaded by default. We haven’t yet seen the code in the R source file that
created the plot.

In the cars data frame, the variable speed contains the stopping speed, and
dist contains the stopping distances. Here is the code to create the plot:

Create simple scatterplot of cars' speed and stopping distance
plot(x = cars$speed, y = cars$dist,

12http://www.cookbook-r.com/Graphs/
13http://www.statmethods.net/advgraphs/

http://www.cookbook-r.com/Graphs/
http://www.statmethods.net/advgraphs/

10.3 Knitting R’s Default Graphics 199

xlab = "Speed (mph)",
ylab = "Stopping Distance (ft)",
cex.lab = 1.5)

We select the variables from cars to plot on the 𝑥- and 𝑦-axes of our graph
with the component selector ($). Then we use the xlab and ylab arguments
to specify the 𝑥- and 𝑦-axes labels. We could have added a title for the plot
using the main argument. We didn’t do this because we will give the plot a
title in the LaTeX figure environment. The cex.lab argument increased the
labels’ font size. The argument specifically determines how to scale the labels
relative to the default size: 1.5 means 50 percent larger than the default.

Now let’s see how to create this plot with knitr and include it in a LaTeX
figure environment.

\begin{figure}[ht]
```{r echo=FALSE, fig.align='center', out.width='8cm'}

plot(x = cars$speed, y = cars$dist,
xlab = "Speed (mph)",
ylab = "Stopping Distance (ft)",
cex.lab = 1.5)

```
\caption{Example Simple Scatterplot Using \texttt{plot}}
\label{BasicFigureExample}

\end{figure}

5 10 15 20 25

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Speed (mph)

S
to

p
p

in
g

 D
is

ta
n

c
e

 (
ft

)

FIGURE 10.2: Example Simple Scatter Plot Using plot

This code produces Figure 10.2.14 If you are familiar with R graphics, you

14Note that I did not specify the center environment. This is because it is specified in a
knitr global chunk option.

200 10 Showing Results with Figures

will notice that we did not need to tell knitr to save the file in a particular
format. Instead, behind the scenes it automatically saves the plot as a PDF
file in a folder called figure that is a child of the current working directory.
You can choose the figure file’s format with the dev (graphical device) chunk
option. For example, to save the figure in a PNG formatted file, add the chunk
option dev='PNG'. You can choose any graphical device format supported by
R. For a full list of R’s graphical devices, type ?Devices into your console. One
reason you might want to change the format is to reduce your presentation
document’s file size. Using a bitmap format like PNG will create smaller files
than PDFs, though lower-quality images.

We could, of course, link to the original R source code file stored on GitHub
with the source_url() function. Let’s look at an example of this with a differ-
ent source code file. Remember in Chapter 6 we used a makefile to gather data
from three different sources on the internet. The CSV is called main-data.csv
and is stored on GitHub at: http://bit.ly/V0ldsf.15 We can download this
data into R and make the following scatterplot matrix (Figure 10.2) with this
code:

Download data
main_data <- rio::import("http://bit.ly/V0ldsf",

format = "csv")

Subset main_data so that it only includes the year 2003
data_sub <- subset(main_data, year == 2003)

Remove iso2c, country, year variables
Keep reg_4state, disproportionality, FertilizerConsumption
data_sub <- data_sub[, c("reg_4state", "disproportionality",

"FertilizerConsumption")]

Create a scatterplot matrix
pairs(x = data_sub)

This is a lot of code, but you should be familiar with most of it. You will
notice that after downloading the data we cleaned it up in preparation for
plotting with the pairs() function by removing data from all years other than
2003 and all of the country-year identifying variables. Finally, we created the
scatterplot matrix with pairs().

To dynamically include the plot in our final document, we don’t need to include
all of this code in a code chunk in our markup document. A file containing the

15The full version of the URL is: https://raw.githubusercontent.com/christophergan
drud/rep-res-book-v3-examples/master/data/main-data.csv

http://bit.ly/V0ldsf
https://raw.githubusercontent.com/christophergandrud/rep-res-book-v3-examples/master/data/main-data.csv
https://raw.githubusercontent.com/christophergandrud/rep-res-book-v3-examples/master/data/main-data.csv

10.4 Knitting R’s Default Graphics 201

reg_4state

5
1
0

1
5

2
0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

5 10 15 20

disproportionality

1
.0

2
.0

3
.0

4
.0

0 2000 6000 10000

0
4
0
0
0

1
0
0
0
0

FertilizerConsumption

FIGURE 10.3: Example of a Scatterplot Matrix

code is available on GitHub.16 So we only need to use source_url() to link to
it. I’ve shortened the raw source code file’s URL to: http://bit.ly/TE0gTc.
Let’s look at the syntax for knitting this into an R Markdown file:

```{r echo=FALSE, fig.cap='Example of a Scatterplot Matrix'}
# Create scatterplot matrix from main-data.csv
devtools::source_url("http://bit.ly/TE0gTc")
```

Because we have linked all the way back to the original data set main-data,
any time it is updated by the makefile, the update will automatically cascade
all the way through to our final presentation document the next time we knit
it.

16See: https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/m
aster/Graphs/ScatterPlotMatrix.R.

http://bit.ly/TE0gTc
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/ScatterPlotMatrix.R
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/ScatterPlotMatrix.R

202 10 Showing Results with Figures

10.4 Including ggplot2 Graphics

The ggplot2 package17 (Wickham et al., 2019a) is probably one of the most
popular packages for making graphics with R. It greatly expands the aesthetic
and substantive tools R has for displaying quantitative information. Figures
created with ggplot2 are (generally) static,18 so they are included in knitted
documents the same way as most of R’s default graphics.

There are a number of very good resources for learning how to use ggplot2.
These include Hadley Wickham’s ggplot2 book (2009) and article (2010). The
official ggplot2 website19 has up-to-date information. I’ve also found the Cook-
book for R website helpful.20

Given that there is already extensive good documentation on ggplot2, we are
not going to learn the full details of how to use the package here. Instead, let’s
look at some examples of how to manipulate a data frame and a regression
results object so that they can be graphed with ggplot2. First we will create a
multi-line time series plot. Then we will create a caterpillar plot of regression
results. Along with giving you a general sense of how ggplot2 works, the exam-
ples illuminate how ggplot2 can be made part of a fully reproducible research
workflow.21

Sometimes we may want to show how multiple variables change to-
gether overtime. For example, imagine we have data on inflation in
the United States along with inflation forecasts made by the US Fed-
eral Reserve two quarters beforehand. The data is stored on GitHub
at: https://raw.githubusercontent.com/christophergandrud/Rep-Res-
Examples/master/Graphs/InflationData.csv.22 I’ve loaded the data into
R and put it into an object called inflation_data. It looks like this:

names(inflation_data)

[1] "Quarter" "ActualInflation"
[3] "EstimatedInflation"

17“GG” stands for grammar of graphics and “2” indicates that it is the second major
version of the package.

18It is possible to combine a series of figures created with ggplot2 into an animation. For
a nice example of an animation using ggplot2, see Jerzy Wieczorek’s animation of 2012 US
presidential campaigning: http://bit.ly/UUVKka.

19http://docs.ggplot2.org/current/
20http://wiki.stdout.org/rcookbook/Graphs/
21Note that everything we do here with ggplot2 can also be done with R’s default graphics,

though the appearance will be different.
22This data is from Gandrud and Grafström (2015). The example here partially recreates

Figure 1 from that paper.

https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/InflationData.csv
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/InflationData.csv
http://bit.ly/UUVKka
http://docs.ggplot2.org/current/
http://wiki.stdout.org/rcookbook/Graphs/

10.4 Including ggplot2 Graphics 203

We want to create a plot with Quarter as the 𝑥-axis, inflation as the 𝑦-
axis, and two lines. One line will represent ActualInflation and the other
EstimatedInflation. To do this, we need to reshape our data so that the
inflation variables are in long format like this:

Quarter Variable Value

1969.1 ActualInflation
1969.1 EstimatedInflation
1969.2 ActualInflation
1969.2 EstimatedInflation
…

We can use the pivot_longer function from tidyr that we first saw in Chap-
ter 7 to reshape the data. The variable identifying the observations in this
case is Quarter. The ActualInflation and EstimatedInflation variables
(in columns two and three) are the variables that we want to pivot. So let’s
pivot the data:

library(tidyr)

Pivot inflation_data
inflation_long <- pivot_longer(inflation_data, cols = 2:3,

names_to = "variable")

inflation_long

A tibble: 304 x 3
Quarter variable value
<dbl> <chr> <dbl>
1 1969. ActualInflation NA
2 1969. EstimatedInflation 4.55
3 1969. ActualInflation 3.5
4 1969. EstimatedInflation 4.80
5 1969. ActualInflation 3.5
6 1969. EstimatedInflation 5.28
7 1969. ActualInflation 3.3
8 1969. EstimatedInflation 5.15
9 1970. ActualInflation 3.7
10 1970. EstimatedInflation 5.54
... with 294 more rows

Now we have a data set we can use to create our line graph with ggplot2.

Let’s cover a few basic ggplot2 ideas that will help us understand the follow-
ing code better. First, plots are composed of layers including the coordinate

204 10 Showing Results with Figures

system, points, labels, and so on. Each layer has aesthetics, including the vari-
ables plotted on the 𝑥- and 𝑦-axes, label sizes, colors, and shapes. Aesthetic
elements are defined by the aes() argument. Finally, the main layer types
are called geometrics, including lines, points, bars, and text. Functions that
set geometrics usually begin with geom. For example, the geometric to create
lines is geom_line().

library(ggplot2)

Create plot
line_plot <- ggplot(data = inflation_long,

aes(x = Quarter, y = value,
color = variable, linetype = variable)) +

geom_line() +
scale_color_discrete(name = "",

labels = c("Actual", "Estimated")) +
scale_linetype(name = "",

labels = c("Actual", "Estimated")) +
xlab("Quarter") + ylab("Inflation") +
theme_bw(base_size = 15)

You can see we set the 𝑥- and 𝑦-axes using the Quarter and value variables.
We told ggplot that elements in the geometric layer should have lines with
different colors and line types (dashed, dotted, and so on) based on the value
of variable that they represent. geom_line specifies that we want to add a
line geometric layer.23 scale_color_discrete() and scale_linetype() are
used here to hide the plot’s legend title with name = "" and customize the
legend’s labels with labels = You can also use them to determine the
specific colors and line types you would like to use. xlab() and ylab() set the
axes’ labels. You can add a title with ggtitle. Finally, I added theme_bw()
so that the plot would use a simple black-and-white theme. We added the
argument base_size = 15 to increase the plot’s font size.

All of the code required to create this graph is on GitHub at: https://bit.
ly/2FaMkOJ.24 To knit the graph into a LaTeX document manually specifying
the figure environment, type:

\begin{figure}[ht]
\caption{Example Multi-line Time Series Plot Created with
\emph{ggplot2}} \label{ggplot2Line}

23Remember from Chapter 3 that functions must be followed by parentheses. These layers
are functions so they need to be followed by parentheses.

24The full URL is: https://raw.githubusercontent.com/christophergandrud/Rep-Res-
Examples/master/Graphs/InflationLineGraph.R.

https://bit.ly/2FaMkOJ
https://bit.ly/2FaMkOJ
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/InflationLineGraph.R
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/InflationLineGraph.R

10.4 Including ggplot2 Graphics 205

\begin{center}
```{r echo=FALSE, out.width='10cm'out.height='8cm'}

# Create plot
devtools::source_url("https://bit.ly/2FaMkOJ")

```
\end{center}

\end{figure}

3

6

9

1970 1980 1990 2000

 Quarter

In
fla

tio
n

Actual

Estimated

FIGURE 10.4: ggplot2 Time Series Line Plot

The syntax for including this and other ggplot2 figures in an R Markdown
document is the same as we saw for default R graphics.

10.4.1 Showing regression results with caterpillar plots

Many packages that estimate statistical models from data in R have built-in
plotting capabilities. For example, the survival package (Therneau, 2019) has
the plot.survfit() function for plotting survival curves created using event
history analysis. These plots can be knitted into presentation documents like
the plots we have seen already.

However, sometimes either a package doesn’t have built-in functions for plot-
ting model results the way you want to and/or you want to use ggplot2 to
improve the aesthetic quality of the plots they do create by default. In either
case, you can almost always create the plot that you want by first breaking
into the model results object, extracting what you want, then plotting it with

206 10 Showing Results with Figures

ggplot2. The process is very similar to what we did in Chapter 9 to create
custom tables.

To illustrate how this can work, let’s create a caterpillar plot, like the following
figure, showing the mean coefficient estimates and the uncertainty surrounding
them from a Bayesian normal linear regression model using the swiss data
frame. Here is our model:

Fit model
linear_brms_2 <- brm(Examination ~ Education +

Agriculture + Catholic + Infant.Mortality,
data = swiss,
family = gaussian(link = "identity"),
refresh = 0)

Remember from Chapter 9 that we can create an object summarizing our
estimation results like this:

Create summary object
linear_brms_2_sum <- summary(linear_brms_2)

Create summary data frame
linear_brms_2_sum_df <- data.frame(linear_brms_2_sum$fixed)

Show data frame
linear_brms_2_sum_df

Estimate Est.Error l.95..CI u.95..CI
Intercept 18.738782 5.93976 7.1530 30.40377
Education 0.423219 0.09460 0.2391 0.61269
Agriculture -0.067560 0.04277 -0.1505 0.01501
Catholic -0.079991 0.01797 -0.1152 -0.04502
Infant.Mortality -0.008992 0.23439 -0.4793 0.44832
Rhat Bulk_ESS Tail_ESS
Intercept 1.001 2976 2905
Education 1.001 3106 2906
Agriculture 1.001 2720 2574
Catholic 1.002 3730 2940
Infant.Mortality 1.000 4033 2958

We want to use ggplot2 to create credibility intervals for each variable with
l.95..CI as the minimum value and u.95..CI as the maximum value. These
are the lower and upper bounds of the middle 95 percent of the estimates’
marginal posterior distributions, i.e. the 95 percent credibility intervals.25 We

25The procedures used here are also generally applicable for graphing frequentist confi-

10.4 Including ggplot2 Graphics 207

will also create a point at the mean of each estimate. To do this, we will use
ggplot2’s geom_pointrange function.

First we need to do a little tidying up.

Convert row.names to column
linear_brms_2_sum_df$Variable <- row.names(linear_brms_2_sum_df)

Keep only coefficient estimates
This allows for a more interpretable scale
linear_brms_2_sum_df <- subset(linear_brms_2_sum_df,

Variable != "Intercept")

The first line of executable code creates a proper variable out of the data
frame’s row.names attribute. In this case, row.names contains the names of
the variables included in the regression. The second executable line removes
the Intercept estimates. This allows the variable’s coefficient estimates to be
plotted on a scale that enables easier interpretation.

Now we can create our caterpillar plot (Figure 10.5).

library(dplyr)

Rename variables to make them easier for ggplot2 to work with
linear_brms_2_sum_df <- rename(linear_brms_2_sum_df,

lower = `l.95..CI`)
linear_brms_2_sum_df <- rename(linear_brms_2_sum_df,

upper = `u.95..CI`)

Make caterpillar plot
ggplot(data = linear_brms_2_sum_df,

aes(x = reorder(Variable, lower),
y = Estimate,
ymin = lower, ymax = upper)) +

geom_pointrange(size = 1.4) +
geom_hline(yintercept = 0,

linetype = "dotted") +
xlab("Variable") +
ylab("Coefficient Estimate") +
coord_flip() + theme_bw(base_size = 20)

There are some new pieces of code in here, so let’s take a look. First, the

dence intervals once you have calculated the confidence intervals. One useful function for
doing this is confint.

208 10 Showing Results with Figures

Infant.Mortality

Agriculture

Catholic

Education

-0.3 0.0 0.3 0.6

Coefficient Estimate

V
a

ri
a

b
le

FIGURE 10.5: Example Caterpiller Plot

data frame is reordered from the highest to lowest value of l.95..CI using
the reorder() function. We renamed this column “lower” so that it would
be easier to work with in ggplot(). Reordering by these values makes the
plot easier to read. The middle point of the point range is set with y and the
lower and upper bounds with ymin and ymax. The geom_hline() function
used here creates a dotted horizontal line at 0, i.e. no effect. coord_flip()
flips the plot’s coordinates so that the variable names are on the 𝑦-axis. We
can include this plot in a knitted document the same way as before.

Note that we create this example to help you understand the power of ggplot2
to create new graphics from complex objects. This particular task—creating
caterpillar plots from brms objects—has been packaged into the stanplot()
function that comes with brms.

10.5 JavaScript Graphs with googleVis

Markus Gesmann and Diego de Castillo’s (2019) googleVis package allows us
to use Google’s Visualization API from within R to create interactive tables,
plots, and maps with Google Chart Tools. Because the visualizations are writ-

10.5 JavaScript Graphs with googleVis 209

ten in JavaScript, they can be included in HTML presentation documents
created by R Markdown. Unfortunately, they cannot be directly26 included in
LaTeX-produced PDFs. The animation package (Xie, 2018) does have some
limited features for including interactive visualizations in PDFs (as well as
HTML documents) and is worth investigating if you want to do this. The
gganimate package allows you to annimate ggplot2 graphics as GIFs. However,
these cannot be included in PDFs.

10.5.1 Basic googleVis figures

Let’s briefly look at how to make one type of figure with googleVis: a choropleth
map. This is created with the gvisGeoChart() function. We will use this
example to illustrate how to incorporate googleVis figures into R Markdown.27

Imagine that we want to map global fertilizer consumption in 2011 using the
World Bank data we gathered in Chapter 6. Remember that the data was
highly right skewed, so we will actually map the natural logarithm of the
fert_cons variable.28 Assuming that we have already loaded the main-data
data set, here is the code:

Load googleVis
library(googleVis)

Subset main_data so that it only includes 2011
data_sub <- subset(main_data, year == 2011)

Keep values of fert_cons greater-than 0.1 data_sub <-
subset(data_sub, fert_cons > 0.1)

Find the natural logarithm of fert_cons
Round the results to one decimal digit.
data_sub$fert_cons_log <- round(log(data_sub$fert_cons),

digits = 1)

Make a map of Fertilizer Consumption
fc_map <- gvisGeoChart(data = data_sub,

locationvar = "iso2c",
colorvar = "LogConsumption",

26The example in this chapter is from a screenshot.
27For demonstrations of the full range of plotting functions available, visit the googleVis

website: http://code.google.com/p/google-motion-charts-with-r/wiki/GadgetExample
s#googleVis_Examples.

28You’ll notice in the code below that we remove all values of fert_cons less than 0.1.
This is so that we can calculate integer values with the natural logarithm.

http://code.google.com/p/google-motion-charts-with-r/wiki/GadgetExamples#googleVis_Examples
http://code.google.com/p/google-motion-charts-with-r/wiki/GadgetExamples#googleVis_Examples

210 10 Showing Results with Figures

options = list(
colors = "['#ECE7F2', '#A6BDDB',

'#2B8CBE']",
width = "780px", height = "500px")

)

The locationvar argument specifies the variable with information on each
observation’s location. Google Chart Tools can use ISO two-letter country
codes to determine each country’s location. colorvar specifies the variable
with the values to map for each country. We can determine other options
by creating a list-type object with arguments specifying characteristics such
as the map’s width, height, and colors. The colors here are written using
hexadecimal values. This is a commonly used format for specifying colors on
websites.29

To view the figure on your computer, use googleVis’s plot() function. For
example, to view our map, type:

plot(fc_map)

Note that you need to be connected to the internet to view figures created
by googleVis; otherwise, your image will not be able to access the required
JavaScript files from the Google Visualization API.

10.5.2 Including googleVis in knitted documents

Typing print(fc_map, tag = "chart") in a knittable document would print
the entire JavaScript code needed to create the map. Much like we saw with ta-
bles produced with xtable and texreg in Chapter 9, we need to change the code
chunk results option to include the map as a map rather than as JavaScript
markup. To have the visualization show up in your HTML output, rather
than the code block, set the code chunk option to results='asis'.30 For
example, the full code needed to create and print fc_map is available at:
https://bit.ly/2CfXWOs.31 To knit the map into an R Markdown document,
type:

29You can also use hexadecimal values in ggplot2. The Color Brewer 2 website (http:
//colorbrewer2.org/) is very helpful for picking hexadecimal color palettes, among others.

30You can use results=’asis’ to include almost any type of JavaScript graphics. For
an example using the D3 JavaScript library and knitr see this page by Yihui Xie: http:
//yihui.name/knitr/demo/javascript/.

31The full URL is: https://raw.githubusercontent.com/christophergandrud/Rep-Res-
Examples/master/Graphs/GoogleVisMap.R.

https://bit.ly/2CfXWOs
http://colorbrewer2.org/
http://colorbrewer2.org/
http://yihui.name/knitr/demo/javascript/
http://yihui.name/knitr/demo/javascript/
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/GoogleVisMap.R
https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/Graphs/GoogleVisMap.R

10.5 JavaScript Graphs with googleVis 211

FIGURE 10.6: Screenshot of a googleVis Geo Chart

```{r}, echo=FALSE, message=FALSE, results='asis'}
# Create and print geo map
devtools::source_url("https://bit.ly/2CfXWOs")
```

10.5.3 JavaScript Graphs with htmlwidgets-based packages

The number of tools for creating JavaScript graphs from R that can be knit-
ted into HTML files is growing rapidly. The htmlwidgets (Vaidyanathan et al.,
2019) framework is especially making the development of these tools easier.
There are tools built on htmlwidgets for creating maps, network graphs, time
series graphs, and interactive tables, among others. Though the syntax of each
of these tools differs, they can all easily be included into R Markdown docu-
ments. Often you run their core functions in a code chunk, without needing
to use an additional call to print or plot.

Chapter summary

In this chapter we have learned how to take results from our statistical analyses
and other information from our data and dynamically present them in figures.
In the next chapters, we will learn the details of how to create the LaTeX and

212 10 Showing Results with Figures

Markdown presentation documents we use to present the tables we created in
Chapter 9 and the figures we created in this chapter.

Part IV

Presentation Documents

11
Presenting with LaTeX

We have already begun to see how LaTeX works for presenting research re-
sults. This chapter gives you a more detailed and comprehensive introduction
to basic LaTeX document structures and commands. It is not a complete in-
troduction to all that LaTeX is capable of, but we will cover enough that
you will be able to create an entire well-formatted article and slideshow with
LaTeX that you can use to dynamically present your results.

For basic LaTeX documents, such as short articles or simple presentations, it
may often be quicker and simpler to write the markup using an R Markdown
document and compile it to PDF with the rmarkdown package. Markdown
syntax is much simpler than normal LaTeX. However, there are at least two
reasons why it is useful to become familiar with LaTeX syntax. First, un-
derstanding LaTeX syntax will help you debug issues you might encounter
when using rmarkdown with LaTeX that would otherwise be mysterious if
you were only familiar with Markdown. Second, R Markdown has limited ca-
pabilities for creating more complex documents such as books and documents
with highly customizable formatting needs.1 Using knitr LaTeX or including
LaTeX syntax directly in R Markdown documents can be useful in these sit-
uations.

In this chapter we will learn about basic LaTeX document structures and syn-
tax as well as how to dynamically create LaTeX bibliographies with BibTeX,
R, and knitr. Finally, we will look at how to create PDF beamer slideshows.

Note: This chapter and the following chapter are unusual for this book in
that they do not refer to knitr and R Markdown interchangeably. Remember
you can almost always include LaTeX syntax in an R Markdown document,
though typically this will only impact the document when it is compiled to
PDF.

1The bookdown (Xie, 2020a) R package greatly improved the ability to create book-like
documents with R Markdown. The third edition of this book is made with bookdown.

215

216 11 Presenting with LaTeX

11.1 The Basics

In this section we look at how to create a LaTeX article including what editor
programs to use, the basic structure of a LaTeX document, including pream-
ble and body, LaTeX syntax for creating headings, paragraphs, lines, text
formatting, math, lists, footnotes, and cross-references. I will assume that you
already have a fully functioning TeX distribution installed on your computer.
See Section 1.5.1 for information on how to install TeX.

11.1.1 Getting started with LaTeX editors

RStudio is a fully functional LaTeX editor in addition to being an integrated
development environment for R. If you want to create a new LaTeX document,
you can click File in the menu bar, then New File and R Sweave.

FIGURE 11.1: RStudio TeX Format Options

Remember from Chapter 3 that R Sweave files are basically LaTeX files that
can include knitr code chunks. You can use RStudio to knit and compile a
document with the click of one button: Compile PDF. You can use this button
to compile R Sweave files like regular LaTeX files in RStudio even if they do
not have code chunks. If you use another program to compile them, you might
need to change the file extension from .Rnw to .tex. You can also insert many
of the items we will cover in this section into your documents with RStudio’s
LaTeX TeX Format button. See the figure above.

There are many other LaTeX editors2 and many text editors that can be

2Wikipedia has collated a table that comprehensively compares many of these editors:
https://en.wikipedia.org/wiki/List_of_text_editors.

https://en.wikipedia.org/wiki/List_of_text_editors

11.1 The Basics 217

modified to compile LaTeX documents. For example, alongside writing this
book in RStudio, I typed much of the LaTeX markup in the Atom3 text editor
because it was easier to work with a large number of files simultaneously.
However, RStudio has by far the best integration with knitr.

11.1.2 Basic LaTeX command syntax

As you probably noticed in Part III’s examples, LaTeX commands start with a
backslash (\). For example, to create a section heading you use the \section
command. The arguments for LaTeX commands are written inside of curly
braces ({}) like this:

\section{My Section Name}

Probably one of the biggest sources of errors that occur when compiling a
LaTeX document to PDF are caused by curly brackets that aren’t closed,
i.e. an open bracket ({) is not matched with a subsequent closed bracket (}).
Watch out for this and use an editor (like RStudio) that highlights brackets’
matching pairs. As we will see, unlike in R with parentheses, if your LaTeX
command does not have an argument, you do not need to include the curly
brackets at all.

There are a number of places to find comprehensive lists of LaTeX commands.
The Netherlands TeX users group has compiled one: http://www.ntg.nl/d
oc/biemesderfer/ltxcrib.pdf.

11.1.3 The LaTeX preamble and body

All LaTeX documents require a preamble. The preamble goes at the very be-
ginning of the document. The preamble usually starts with the documentclass
command. This specifies what type of presentation document you are creat-
ing, e.g. an article, a book, a slideshow,4 and so on. LaTeX refers to these
as classes. Classes specify a document’s formatting. You can add options to
documentclass to change the format of the entire document. For example, if
we wanted to create an article class document with two columns, we would
type:

\documentclass[twocolumn]{article}

3https://atom.io/
4“Slideshow” is not a valid class. One slideshow class that we discuss later is called

“beamer”.

http://www.ntg.nl/doc/biemesderfer/ltxcrib.pdf
http://www.ntg.nl/doc/biemesderfer/ltxcrib.pdf
https://atom.io/

218 11 Presenting with LaTeX

In the preamble you can also specify other style options and load extra pack-
ages. The command to load a package in LaTeX is \usepackage. For example,
if you include \usepackage{url} in the preamble of your document, you will
be able to specify URL links in the body with the command \url{SOMEURL}.

The preamble is often followed by the body of your document. It is specified
with the body environment. See Chapter 9 for more details about LaTeX
environments. You tell LaTeX where the body of your document starts by
typing \begin{document}. The very last line of your document is usually
\end{document}, indicating that your document has ended. When you open
a new R Sweave file in RStudio, it creates an article class document with a
very simple preamble and body like this:

\documentclass{article}

\begin{document}
\SweaveOpts{concordance=TRUE}

\end{document}

This is all you need to get a very basic article class document working.5 If you
want the document to be of another class, change article to something else,
a book for example.

Let’s begin to modify the markup. First we will include in the preamble the
(hyperref) for clickable hyperlinks and natbib for bibliography formatting.
We will discuss natbib in more detail below. Note that in general, and unlike
in R, almost all of the LaTeX packages you will use are installed on your
computer when you installed the TeX distribution.

Next, it’s often a good idea to include knitr code chunks that specify features
of the document as a whole. These can include global chunk options as well
as loading data and packages used throughout the document.

Then you likely want to specify title information just after the document envi-
ronment begins. Use the title command to add a title, the author command
to add author information, and date to specify the date.6 Then include the
maketitle command. This will place your title and author information in the
body of the document. If you are writing an article you may also want to

5\SweaveOpts{concordance=TRUE} maps the line numbers in your .Rnw file to the .tex
file it generates. This especially helps with debugging. See: https://support.rstudio.co
m/hc/en-us/articles/200532247-Weaving-Rnw-Files (accessed 3 October 2019).

6In some document classes the current data will automatically be included if you don’t
specify the date.

https://support.rstudio.com/hc/en-us/articles/200532247-Weaving-Rnw-Files
https://support.rstudio.com/hc/en-us/articles/200532247-Weaving-Rnw-Files

11.1 The Basics 219

follow maketitle with an abstract. Unsurprisingly, you can use the abstract
environment to include this.

Here is a full LaTeX article class document with all of these changes added:

%%%%%%%%%%%%%% Article Preamble %%%%%%%%%%%%%%
\documentclass{article}

%% Load LaTeX packages
\usepackage{url}
\usepackage{hyperref}
\usepackage[authoryear]{natbib}

%% Set knitr global options and gather data
<<Global, include=FALSE>>=
Set chunk options
knitr::opts_chunk$set(fig.align='center')

Load and cite R packages
Create list of packages
packages_used <- c("knitr", "ggplot2", "knitr")

Load PackagesUsed and create .bib BibTeX file.
Load packages
lapply(packages_used, library,

character.only = TRUE)

Create package BibTeX file
knitr::write_bib(packages_used, file = "packages.bib")

Gather Democracy data from Pemstein et al. (2010)
For simplicity, store the URL in an object called 'url'.
url <- "http://www.unified-democracy-scores.org/files/20140312/
z/uds_summary.csv.gz"

Create a temporary file called 'temp' to put the zip file into.
temp <- tempfile()

Create a temporary file called 'temp' to put the zip file into.
temp <- tempfile()

Download the compressed file into the temporary file.
download.file(url, temp)

Decompress the file and convert it into a data frame

220 11 Presenting with LaTeX

class object called 'data'.
uds_data <- read.csv(gzfile(temp, "uds_summary.csv"))

Delete the temporary file.
unlink(temp)
@

%% Start document body
\begin{document}
\SweaveOpts{concordance=TRUE}

%%%%%%%%%%%%% Create title %%%%%%%%%%%%%%%%%
\title{An Example knitr LaTeX Article}
\author{Christopher Gandrud \\
Zalando SE\thanks{Email: \href{mailto:christopher.gandrud@zalando
.de}{christopher.gandrud@zalando.de}}}
\date{August 2019}
\maketitle

%%%%%%%%%%%%% Abstract %%%%%%%%%%%%%%%%%%%%
\begin{abstract}
Here is an example of a knittable article class LaTeX
document.

\end{abstract}

%%%%%%%%%%% Article Main Text %%%%%%%%%%%%%
\section{The Graph}

I gathered data from \cite{Pemstein2010} on countries' democracy
level. They call their democracy measure the Unified Democracy
Score (UDS). Figure \ref{DemPlot} shows the mean UDS scores
over time for all of the countries in their sample.

\begin{figure}
\caption{Mean UDS Scores}
\label{DemPlot}

<<echo=FALSE, message=FALSE, warning=FALSE, out.width='7cm',
out.height='7cm'>>=
Graph UDS scores

ggplot(uds_data, aes(x = year, y = mean)) +
geom_point(alpha = I(0.1)) +
stat_smooth(size = 2) +
ylab("Democracy Score") + xlab("") +
theme_bw()

11.1 The Basics 221

@
\end{figure}

%%%%%%%%%%% Reproducing the Document %%%%%
\section*{Appendix: Reproducing the Document}

This document was created using the R version
\Sexpr{paste0(version$major, ".",
version$minor)} and the R package \emph{knitr}
\citep{R-knitr}.

It also relied on the R packages \emph{ggplot2} and
\citep{R-ggplot2}. The document can be completely
reproduced from source files available on GitHub
at: \url{https://github.com/christophergandrud/
rep-res-book-v3-examples}.

%%%%%%%%% Bibliography %%%%%%%%%%%%%%%%%%%%
\bibliographystyle{apa}
\bibliography{main.bib, packages.bib}
\end{document}

The knitr code chunk syntax should be familiar to you from previous chapters,
so let’s unpack the LaTeX syntax from just after the first code chunk, including
the “Create title” and “Abstract” parts. New syntax shown in later parts of
this example is discussed in the remainder of this section and the next section
on bibliographies.

First, remember that the percent sign (%) is LaTeX’s comment character.
Using it to comment your markup can make it easier to read. Second, as
we saw in Chapter 9, double backslashes (\\), like those after the author’s
name, force a new line in LaTeX. We will discuss the emph command in a
moment. Third, using the thanks command allows us to create a footnote for
author contact information7 that is not numbered like the other footnotes (see
below). Finally, you’ll notice \href{mailto:org}}. This creates an
email address in the final document that will open the reader’s default email
program when clicked.

You may have noticed the following line:

\Sexpr{paste0(version$major, ".", version$minor)}

This code finds the current version of R being used and prints the version
number into the presentation document.

7Frequently it also includes thank yous to people who have helped with the research.

222 11 Presenting with LaTeX

11.1.4 Headings

Earlier in the chapter, we briefly saw how to create section-level headings
with section. There are a number of other sub section-level headings includ-
ing subsection, subsubsection, paragraph, and subparagraph. Headers are
numbered automatically by LaTeX.8 To have an unnumbered section, place
an asterisk in it like this: \section*{UNNUMBERED_SECTION}. In book class
documents, you can also use chapter to create new chapters and part for
collections of chapters.

11.1.5 Paragraphs and spacing

In LaTeX, paragraphs are created by adding a blank line between lines. It will
format all of the tabs for the beginning of paragraphs based on the document’s
class rules. As we discussed before, writing tabs in the markup version of your
document does nothing in the compiled document. They are generally used
just to make the markup easier for people to read.

Note that adding more blank lines between paragraphs will not add extra
space between the paragraphs in the final document. To specify the space fol-
lowing paragraphs (or almost any line) use the vspace (vertical space) com-
mand. For example, to add three centimeters of vertical space on a page type:
\vspace{3cm}.

Similarly, adding extra spaces between words in your LaTeX markup won’t
create extra spaces between words in the compiled document. To add horizon-
tal space use the hspace command in the same way as vspace.

11.1.6 Horizontal lines

Use the hrulefill command to create horizontal lines in the text of your
document. For example, \hrulefill creates:

Inside of a tabular environment, use the hline command rather than
hrulefill.

8The paragraph level does not have numbers.

11.1 The Basics 223

TABLE 11.1: LaTeX Font Size Commands

Huge
huge
LARGE
Large
large

normalsize
small

footnotesize
scriptsize

tiny

11.1.7 Text formatting

Let’s briefly look at how to do some of the more common types of text format-
ting in LaTeX and how to create some commonly used diacritics and special
characters.

Italics and Bold

To italicize a word in LaTeX, use the emph (emphasis) command. For bold, use
textbf. You can nest commands inside of one another to combine their effect.
For example, to italicize and bold a word, use: \emph{textbf{italicize
and bold}}.

Font size

You can specify the base font size of an entire document with a
documentclass option. For example, to create an article with 12-point font,
use: \documentclass[12pt]{article}.

There are a number of commands to set the size of specific pieces of text
relative to the base size. See the following table for the full list. Usually
a slightly different syntax is used for these commands that goes like this:
{\SIZE_COMMAND . . . }. For example, to use the tiny size in your text use:
{\tiny{tiny size}}.

You can change the size of code chunks that knitr places in presentation
documents using these commands. Just place the code chunk inside of
{\SIZE_COMMAND . . . }. This is similar to using the size code chunk op-
tion.

224 11 Presenting with LaTeX

Diacritics

You cannot directly enter letters with diacritics—e.g. accent mark—into
LaTeX. For example, to create a letter c with a cedilla (ç) you need to
type \c{c}. To create an ‘a’ with an acute accent (á), type: \'{a}. There
are obviously many types of diacritics and commands to include them
within LaTeX-produced documents. For a comprehensive discussion of the
issue and a list of commands see the LaTeX Wikibook page on the topic:
https://en.wikibooks.org/wiki/LaTeX/Special_Characters. If you reg-
ularly use non-English alphabets, you might also be interested in reading the
LaTeX Wikibook page on internationalization: https://en.wikibooks.org
/wiki/LaTeX/Internationalization.

Quotation marks

To specify double left quotation marks (“), use two back ticks (``). For double
right quotes (”), use two apostrophes (''). Single quotes follow the same
format (`').

11.1.8 Math

LaTeX is particularly popular among quantitative researchers and mathemati-
cians because it is very good at rendering mathematical notation. A complete
listing of every math command would take up quite a bit of space.9 I am briefly
going to discuss how to include math in a LaTeX document. This discussion
includes a few math syntax examples.

To include math inline with your text, place the math syntax in between
backslashes and parentheses, i.e. \(. . . \). For example, \(s^{2} =
\frac{\sum(x - \bar{x})^2}{n - 1} \) produces 𝑠2 = ∑(𝑥−�̄�)2

𝑛−1 in our fi-
nal document.10 We can display math separately from the text by placing the
math commands inside of backslashes and square brackets: \[. . . \].11

For example,

\[

9See the Netherlands TeX user group list mentioned earlier for an extensive compilation
of math commands.

10Instead of backslashes and parentheses, you can also use a pair of dollar signs ($. .
.$).

11Equivalently, use two pairs of dollar signs ($$…$$) or the display environment. Though
it will still work in most cases, the double dollar sign math syntax may cause errors. You
can also number display equations using the equation environment.

https://en.wikibooks.org/wiki/LaTeX/Special_Characters
https://en.wikibooks.org/wiki/LaTeX/Internationalization
https://en.wikibooks.org/wiki/LaTeX/Internationalization

11.1 The Basics 225

s^{2} = \frac{\sum(x - \bar{x})^2}{n - 1}
\]

gives us:

𝑠2 = ∑(𝑥 − ̄𝑥)2

𝑛 − 1

11.1.9 Lists

To create bullet lists in LaTeX, use the itemize environment. Each list item
is delimited with the item command. For example:

\begin{itemize}
\item The first item.
\item The second item.
\item The third item.

\end{itemize}

gives us:

• The first item.

• The second item.

• The third item.

To create a numbered list, use the enumerate environment instead of itemize.

You can create sublists by nesting lists inside of lists like this:

\begin{itemize}
\item The first item.
\item The second item.
\begin{itemize}

\item A sublist item
\end{itemize}
\item The third item.

\end{itemize}

which gives us:

• The first item.

• The second item.

226 11 Presenting with LaTeX

– A sublist item

• The third item.

11.1.10 Footnotes

To create plain, non-bibliographic footnotes, place \footnote{ where you
would like the footnote number to appear in the text. Then type the foot-
note’s text. Remember to close the footnote with a }. LaTeX does the rest,
including formatting and numbering.

11.1.11 Cross-references

LaTeX will also automatically format cross-references. We were already par-
tially introduced to cross-references in Chapters 9 and 10. At the place where
you would like to reference, add a label such as \label{ACrossRefLabel}.
It doesn’t really matter what label name you choose, though make sure
they are not duplicated in the document. Then place a ref command (e.g.
\ref{ACrossRefLabel) at the place in the text where you want the cross-
reference to be.

If you place the label on the same line as a heading command, ref will place
the heading number. If label is in a table or figure environment, you will
get the table or figure number. You can also use pageref instead of ref to
include the page number. Finally, loading the hyperref package makes cross-
references (or footnote) clickable. Clicking on them will take you to the items
they refer to.

11.2 Bibliographies with BibTeX

LaTeX can take advantage of very comprehensive bibliography-making capa-
bilities. All major TeX distributions come with BibTeX. BibTeX is basically
a tool for creating databases of citation information. In this section, we are
going to see how to incorporate a BibTeX bibliography into your LaTeX docu-
ments. Then we will learn how to use R to automatically generate a bibliogra-
phy of packages used to create a knitted document. For more information on
BibTeX syntax, see the LaTeX Wikibook page on Bibliography management:
https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management.

https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management

11.2 Bibliographies with BibTeX 227

11.2.1 The .bib file

BibTeX bibliographies are stored in plain-text files with the extension .bib.
These files are databases of citations.12 The syntax for each citation goes like
this:

@DOCUMENT_TYPE{CITE_KEY,
title = {TITLE},
author = {AUTHOR},
. . . = {. . .}

}

DOCUMENT_TYPE specifies what type of document—article, book, webpage,
and so on—the citation is for. This determines what items the citation can
and needs to include. Then we have the CITE_KEY. This is the reference’s
label that you will use to include the citation in your presentation documents.
We’ll look more at this later in the section. Each citation must have a unique
CITE_KEY. A common way to write these keys is to use the author’s surname
and the publication year, e.g. donoho2009. The cite key is followed by the
other citation attributes such as author, title, and year. These attributes
all follow the same syntax: ATTRIBUTE = {. . .}.

It’s worth taking a moment to discuss the syntax for the BibTeX author
attribute. First, multiple author names are separated by and. Second, BibTeX
assumes that the last word for each author is their surname. If you would
like multiple words to be taken as the “surname”, then enclose these words
in curly brackets. If we wanted to cite the World Bank as an author, we
write {World Bank}; otherwise, it will be formatted “Bank, World” in the
presentation document.

Here is a complete BibTeX entry for Donoho et al. (2009):

@article{donoho2009,
author = {David L Donoho and Arian Maleki and Morteza
Shahram and Inam Ur Rahman and Victoria Stodden},
title = {Reproducible research in computational harmonic
analysis},

journal = {Computing in Science & Engineering},
year = {2009},
volume = {11},
number = {1},
pages = {8--18}

}

12The order of the citations does not matter.

228 11 Presenting with LaTeX

Each item of the entry must end in a comma, except the last one.13

11.2.2 Including citations in LaTeX documents

When you want to include citations from a BibTeX file in your LaTeX docu-
ment, you first use the bibliography command. For example, if the BibTeX
file is called ain.bib and it is in the same directory as your markup document,
then type: \bibliography{ain.bib}. You can use a bibliography stored in
another directory; just include the appropriate file path information. Usually
bibliography is placed right before \end{document} so that it appears at
the end of the compiled presentation document.

You can also specify how you would like the references to be formatted using
the bibliographystyle command. For example, this book uses the American
Psychological Association (APA) style for references. To set this, I included
\bibliographystyle{apa} directly before bibliography. The default style14

is to number citations (e.g. [1]) rather than include author-year information15

used by the APA. You will need to include the LaTeX package natbib in your
preamble to be able to use author-year citation styles. This book includes
\usepackage[authoryear]{natbib} in its preamble.

Place the cite command in your document’s text where you want to place
a reference. You include the CITE_KEY for the reference in this command,
e.g. \cite{donoho2009}. You can include multiple citations in cite, just
separate the CITE_KEYs with commas. You can add options such as the
page numbers or other text to a citation using square brackets ([]). For
example, if we wanted to cite the tenth page of Donoho et al. (2009), we
type: \cite[10]{donoho2009}. The author-year style in-text citation that
this produces looks like this: (Donoho et al., 2009, 10). You can add text
at the beginning of a citation with another set of square brackets. Typing
\cite[see][10]{donoho2009} gives us: (see Donoho et al., 2009, 10).

If you are using an author-year style, you can use a variety of natbib commands
to change what information is included in the parentheses. Table 11.2 contains
a selection of these commands and examples.

11.2.3 Generating a BibTeX file of R package citations

Researchers are pretty good about citing others’ articles and data. However, ci-
tations of R packages used in analyses is very inconsistent. This is unfortunate

13This is very similar to how we create vectors in R, though in BibTeX you can actually
have a comma after the last attribute.

14It is referred to in LaTeX as the plain style.
15This is sometimes referred to as the “Harvard” style.

11.2 Bibliographies with BibTeX 229

TABLE 11.2: A Selection of natbib In-text Citation Style Commands

Command Example Output

\cite{donoho2009} Donoho et al. (2009)
\citep{donoho2009} (Donoho et al., 2009)
\citeauthor{donoho2009} Donoho et al.
\citeyear{donoho2009} 2009
\citeyearpar{donoho2009} (2009)

not only because correct attribution is not being given to those who worked
to create the packages, but also because it makes reproducibility harder. Not
citing packages obscures important steps that were taken in the research pro-
cess, primarily which package versions were used. Fortunately, there are R
tools for quickly and dynamically generating package BibTeX files, including
the versions of the packages you are using. They will automatically update the
citations each time you compile your document to reflect any changes made
to the packages.

You can automatically create citations for R packages using the citation()
function inside of a code chunk. For example, if you want the citation infor-
mation for the knitr package, you type:

citation("knitr")

##
To cite the 'knitr' package in publications use:
##
Yihui Xie (2020). knitr: A General-Purpose
Package for Dynamic Report Generation in R. R
package version 1.27.
##
Yihui Xie (2015) Dynamic Documents with R and
knitr. 2nd edition. Chapman and Hall/CRC. ISBN
978-1498716963
##
Yihui Xie (2014) knitr: A Comprehensive Tool
for Reproducible Research in R. In Victoria
Stodden, Friedrich Leisch and Roger D. Peng,
editors, Implementing Reproducible
Computational Research. Chapman and Hall/CRC.
ISBN 978-1466561595
##
To see these entries in BibTeX format, use
'print(<citation>, bibtex=TRUE)', 'toBibtex(.)',

230 11 Presenting with LaTeX

or set 'options(citation.bibtex.max=999)'.

This gives you both the plain citation as well as the BibTeX version. If you
only want the BibTeX version of the citation, use the toBibtex() function.

toBibtex(citation("knitr"))

The knitr package creates BibTeX bibliographies for R packages with the
write_bib() function. Let’s make a BibTeX file called packages.bib containing
citation information for the knitr package.

Create package BibTeX file
knitr::write_bib("knitr", file = "packages.bib")

write_bib automatically assigns each entry a cite key using the format
R-PACKAGE_NAME, e.g. R-knitr.

Warning: knitr’s write_bib() function currently does not have the ability to
append package citations to an existing file, but instead writes them to a new
file. If there is already a file with the same name, it will overwrite the file. So,
be very careful using this function to avoid accidental deletions. It is a good
idea to have write_bib() always write to a file specifically for automatically
generated package citations. You can include more than one bibliography in
LaTeX’s bibliography command. All you need to do is separate them with
a comma.

\bibliography{main.bib, packages.bib}

We can use these techniques to automatically create a BibTeX file with citation
information for all of the packages used in a research project. Simply make a
character vector of the names of packages that you would like to include in
your bibliography. Then run this through write_bib().

You can make sure you are citing all of the key packages used in a knitted
document by (a) creating a vector of all of the packages and then (b) using this
in the following code to both load the packages and write the bibliography:

Package list
packages_used <- c("ggplot2", "knitr", "xtable")

Load packages
lapply(packages_used, library, character.only = TRUE)

11.3 Presentations with LaTeX Beamer 231

Create package BibTeX file
knitr::write_bib(packages_used, file = "packages.bib")

In the first executable line, we create our list of packages to load and cite. The
next function is lapply() (list apply). This applies the function library()
to all of the items in packages_used. character.only = TRUE is a library
argument that allows us to use character string versions of the package names
as R sees them in the packages_used vector, rather than as objects (how we
have used library up until now). If you include these functions in a code
chunk at the beginning of your knitted document, then you can be sure that
you will have a BibTeX file with all of your packages.

11.3 Presentations with LaTeX Beamer

You can make slideshow presentations with LaTeX. Creating a presentation
with a markup language can take a bit more effort than using a WYSIWYG
program like Microsoft PowerPoint or Apple’s Keynote. However, combining
LaTeX and knitr can make fully reproducible presentations that dynamically
create and present results. I have found this particularly useful in my teaching.
Dynamically produced presentations allow me to provide my students with
fully replicable examples of how I created a figure on a slide. knitr also makes
it easy to beautifully present code examples.

One of the most popular LaTeX tools for slideshows is the beamer class. When
you compile a beamer class document, a PDF will be created where every page
is a different slide. All major PDF viewer programs have some sort of “View
Full Screen” option to view beamer PDFs as full screen slideshows. Usually
you can navigate through the slides with the forward and back arrows on the
keyboard.

In this section we will take a brief look at the basics of creating slideshows
with beamer, highlighting special considerations that need to be made when
working with beamer and knitr. In Chapter 12 we will see how to use the
rmarkdown package to create beamer presentations with the much simpler
Markdown syntax.

11.3.1 Beamer basics

knitr largely works the same way in LaTeX slideshows as it does in article or
book class documents. Nonetheless, there are a few differences to look out for.

232 11 Presenting with LaTeX

FIGURE 11.2: Knitted Beamer PDF Example

11.3 Presentations with LaTeX Beamer 233

The Beamer preamble

You use documentclass to set a LaTeX document as a beamer slideshow.
You can also include global style information in the preamble by using the
commands usetheme, usecolortheme, useinnertheme, useoutertheme. For
a fairly comprehensive compilation of beamer themes, see the Hartwork’s
Beamer theme matrix: https://hartwork.org/beamer-theme-matrix/.

Slide frames

After the preamble, you start your document as usual by beginning the
document environment. Then you need to start creating slides. Individual
beamer slides are created using the frame environments. Create a frame title
using frametitle.

\frame{
\frametitle{An example frame}

}

Note that you can also use the usual \begin{frame} . . \end{frame} syn-
tax. Unlike in a WYSIWYG slide show program, you will not be able to tell if
you have tried to put more information on one slide than it can handle until
after you compile the document.16

Title frames

One important difference from a regular LaTeX article is that instead of using
maketitle to place your title information, in beamer you place the titlepage
inside of a frame by itself.

Sections and outlines

We can use section commands in much the same way as we do in other
types of LaTeX documents. Section commands do not need to be placed
inside of frames. After the title slide, many slideshows have a presenta-
tion outline. You can automatically create one from your section head-
ings using the tableofcontents command. Like the titlepage command,
tableofcontents can go on its own frame:

16One way to deal with frames that span multiple slides is to use the allowframebreaks
command, \begin{frame}[allowframebreaks].

https://hartwork.org/beamer-theme-matrix/

234 11 Presenting with LaTeX

%%% Title slide
\frame{

\titlepage
}

%% Table of contents slide
\frame{

\frametitle{Outline}
\tableofcontents

}

Make list items appear

Lists work the same way in beamer as they do in other LaTeX document
classes. They do have an added feature in that you can have each item appear
as you progress through the slide show. After \item, place the number of
the order in which the item should appear. Enclose the number in < ->. For
example,

\begin{itemize}
\item<1-> The first item.
\item<2-> The second item.
\item<2-> The third item.

\end{itemize}

In this example the first item will appear before the next two. These two will
appear at the same time.

11.3.2 knitr with LaTeX slideshows

knitr code chunks have the same syntax in LaTeX slideshows as in other LaTeX
documents. You do need to make one change to the frame options, however,
to include highlighted knitr code chunks on your slides. You should add the
fragile option to the frame command.17 Here is an example:

\begin{frame}[fragile]
\frametitle{An example fragile frame.}

17For a detailed discussion of why you need to use the fragile option with the verbatim
environment that knitr uses to display highlighted text in LaTeX documents, see this blog
post by Pieter Belmans: https://pbelmans.ncag.info/blog/2011/02/20/why-latex-beam
er-needs-fragile-when-using-verbatim/ (posted 20 February 2011).

https://pbelmans.ncag.info/blog/2011/02/20/why-latex-beamer-needs-fragile-when-using-verbatim/
https://pbelmans.ncag.info/blog/2011/02/20/why-latex-beamer-needs-fragile-when-using-verbatim/

11.3 Presentations with LaTeX Beamer 235

\end{frame}

Chapter summary

In this chapter we have learned the nitty-gritty of how to create simple LaTeX
documents, articles and slideshows, that we can embed our reproducible re-
search in using knitr. In the next chapter we look at how to use R Markdown
to expand the type of presentation documents we can create reproducibly.

12
Presenting in a Variety of Formats with R
Markdown

While Markdown started as a simple way to write HTML documents for the
web, R Markdown (and the programs it relies on in the background, partic-
ularly Pandoc) dramatically expands our ability to take advantage of simple
markdown syntax for creating documents in many formats.

In this chapter we will learn about Markdown editors and the basic Mark-
down syntax for creating simple reproducible documents, including many of
the things we covered for knitr/LaTeX documents such as headings and text
formatting. Please refer back to previous chapters for syntax used to display
code and code chunks (Chapter 8), tables (Chapter 9), and figures (Chapter
10) with R Markdown documents. In this chapter we will also briefly look
at some more advanced features for including math with MathJax, footnotes
and bibliographies with Pandoc, and customizing styles with CSS. Then we
will learn how to create slideshows. We’ll finish up the chapter by looking at
options for publishing Markdown-created HTML documents, including locally
on your computer and GitHub Pages.

12.1 The Basics

Markdown was created specifically to make it easy to write HTML (or
XHTML1) using a syntax that is human readable and possibly publishable
without compiling. For example, compare the Markdown table syntax in Chap-
ter 9 to the HTML syntax for virtually the same table.2 That being said, to
make Markdown simple, it does not have as many capabilities as HTML. To
get around this problem, you can still use HTML in Markdown, though note
that Markdown syntax cannot be used between HTML element tags. Pandoc

1Extensible HyperText Markup Language.
2For more information, see John Gruber’s website: https://daringfireball.net/proje

cts/markdown/.

237

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/

238 12 Presenting in a Variety of Formats with R Markdown

and R Markdown extend Markdown so that it can be used to create repro-
ducible PDF and MS Word documents.

Note: If you are using rmarkdown to compile a document to PDF or Word,
using raw HTML syntax will often not work as intended, if at all. As a rule, syn-
tax specific to LaTeX or HTML that is included in an R Markdown document
can only be properly compiled to a PDF or HTML document, respectively.
Similarly, you are only able to include graphics that are of types supported
by the output format. You are not able to include a JavaScript plot directly
in a PDF. R Markdown has been continuously improving its ability to in-
teroperate between the different formats. For example, the kable() function
creates tables without having to worry too much about the output format.
The knitr code chunck option fig.ext (figure extension) allows you to more
dynamically set the output format of a dynamically created figure so that it
will be compilable to multiple formats.

12.1.1 Getting started with Markdown editors

RStudio functions as a very good editor for R Markdown documents and regu-
lar non-knittable Markdown documents as well. To create a new R Markdown
document in RStudio, click File in the menu bar, then New R Markdown. You
will then be able to select what output format you would like. RStudio has full
syntax highlighting for code chunks and can compile .Rmd files into .md, then
render them in .html, for example, with one click of the Knit HTML button.
As we saw in Chapter 3, when you knit a Markdown document in RStudio,
it will preview the HTML document for you. You can always view HTML
documents by opening them with your web browser. You can do this directly
from RStudio’s Preview HTML window by clicking the Open in Browser
button.

FIGURE 12.1: R Markdown Compile Dropdown Menu

If you click on the downward arrow next to Knit HTML, you will see the above
dropdown menu. This allows you to also compile the document to PDF or MS
Word, regardless of which format you originally chose when you created the
document. As with HTML, you will be given a preview of the PDF or Word
document when it is compiled.

12.1 The Basics 239

Being plain-text, you can also use any other text editor to modify Markdown
documents, though they will lack the level of integration with knitr/R Mark-
down that RStudio has.

12.1.2 Preamble and document structure

That was kind of a trick subsection title. Unlike LaTeX documents, plain
Markdown documents do not have a preamble. R Markdown documents can
have a header, basically another name for a preamble, but we will get to that
later. There is also no need to start a body environment or anything like that.
HTML head elements (HTML’s preamble equivalent) are added automatically
when you render Markdown documents into HTML. With Markdown, you can
just start typing the content of your document.

Here is an example of an R Markdown document that creates the map we saw
in Chapter 10. We’ll go through all of the code below.

title: "Fertilizer Consumption"
author: "Christopher Gandrud"
date: "12/29/2018"
output: html_document

Fertilizer Consumption (kilograms per hectare of arable land)
in 2003

Note: Data is from the [World Bank](https://data.worldbank.org/
indicator/AG.CON.FERT.ZS)

```{r CreategvisGeoMap, echo=FALSE, message=FALSE, results='asis'}
source("analysis/googlevis-map.R")
```

R Session Info

```{r echo=FALSE}
sessionInfo()
```


240 12 Presenting in a Variety of Formats with R Markdown

12.1.3 Headings

Headings in Markdown are simple. Note that Markdown headings and R Mark-
down headers are not the same thing. The latter gives instructions for how to
render the document, the former are section titles in the text. To create a line
in the topmost heading style—maybe a title—just place one hash mark (#) at
the beginning of the line. The second-tier heading gets two hashes (##) and
so on. You can also put the hash mark(s) at the end of the heading, but this
is not necessary. Here is an example of the three headings:

A level one heading

A level two heading

A level three heading

There are six heading levels in Markdown. You can also create a level one
heading by following a line of text with equal signs. Level two headings can
be created by following a line of text with dashes:

A level one heading
===================

A level two heading

12.1.4 Horizontal lines

If you would like to create horizontal lines that run the width of the page in
Markdown, place three or more equal signs or dashes separated by text from
above by one blank line:

Create a horizontal line.

=========

12.1.5 Paragraphs and new lines

Just like in LaTeX, new paragraphs are created by putting text on a new line
separated from previous text with a blank line. For example:

12.1 The Basics 241

This is the first paragraph.

This is the second paragraph.

Separating lines with a blank line places a blank line in the final document.
End a line with two or more white spaces () to create a new line that is not
separated by a blank line.

12.1.6 Italics and bold

To italicize a word in Markdown, place it between two asterisks,
e.g. *italicize these words*. To make words bold, place them between
four asterisks, two on either side: **make these words bold**.

12.1.7 Links

To create hyperlinks in Markdown, use the [LINK_TEXT](URL) syntax.3
LINK_TEXT is the text that you would like to show up as the hyperlink text.
When you click on this text, it will take you to the linked site specified by
URL. If you want to show only a URL as the text, type it in both the square
brackets and parentheses. This is a little tedious, so in RStudio you can just
type the URL and it will be hyperlinked. In regular Markdown, place the URL
between less than and greater than signs (<URL>).

Special characters and font customization

Unlike LaTeX rendered with pdfLaTeX, Markdown can include almost any
letters and characters included in your system. The main exceptions are char-
acters used by Markdown syntax (e.g. *, #, \ and so on). You will have to
escape these (see below). Font sizes and typefaces cannot be set directly with
Markdown syntax. You need to set these with HTML or CSS, which I don’t
cover here, though below we will look at how to use a custom CSS file.

12.1.8 Lists

To create itemized lists in Markdown, place the items after one dash:

3You can also include a title attribute after the URL, though this is generally not very
useful.

242 12 Presenting in a Variety of Formats with R Markdown

- Item 1
- Another item
- Item 3

To create a numbered list, use numbers and periods rather than dashes.

1. Item 1
2. Another item
3. Item 3

Escape characters

Markdown, like LaTeX and R, uses a backslash (\) as an escape character.
For example, if you want to have an asterisk in the text of your document
(rather than start to italicize your text, e.g. *some italicized text*), type:
*. Two characters—ampersand (&) and the less-than sign (<)—have special
meanings in HTML.4 So, to have them printed literally in your text, you have
to use the HTML code for the characters. Ampersands are created with &.
Less than signs are created with <.

12.1.9 Math with MathJax

Markdown by itself can’t format mathematical equations. We can create
LaTeX-style equations in HTML documents by adding on the MathJax
JavaScript engine. MathJax syntax is the same as LaTeX syntax (see Section
11.1.8), especially when used from RStudio or when rendered with rmarkdown.
Markdown-HTML documents rendered in RStudio automatically link to the
MathJax engine online.5 If you want to use another program to render Mark-
down documents with MathJax equations, you may need to take extra steps
to link to MathJax. For more details, see https://www.mathjax.org/#getti
ngstarted.

Because backslashes are Markdown escape characters, in many Markdown
editors you will have to use two backslashes to create math environments
with MathJax. For example, in LaTeX and RStudio’s Markdown, you can
create a display equation like this:

𝑠2 = ∑(𝑥 − ̄𝑥)2

𝑛 − 1
4Ampersands declare the beginning of a special HTML character. Less-than signs begin

HTML tags.
5You will not be able to render equations when you are not online.

https://www.mathjax.org/#gettingstarted
https://www.mathjax.org/#gettingstarted

12.2 Further Customizability with rmarkdown 243

by typing:6

$$s^{2} = \frac{\sum(x - \bar{x})^2}{n - 1}$$

But, in other Markdown programs, you may have to use:

\\[
s^{2} = \frac{\sum(x - \bar{x})^2}{n - 1}

\\]

To make inline equations, use parentheses instead of square brackets as in La-
TeX, e.g. \(s^{2} = \frac{\sum(x - \bar{x})^2}{n - 1} \). You can
also use single dollar signs, e.g. $ s^{2} = \frac{\sum(x - \bar{x})^2}{n
- 1} $

12.2 Further Customizability with rmarkdown

Markdown is simple and easy to use. But being simple means that it lacks
important functionality for presenting research results, such as footnotes and
bibliographies, and custom formatting. In this section we will learn how to
overcome these limitations with Pandoc via the rmarkdown package.

More on rmarkdown Headers

In Chapter 3 we first saw an R Markdown header written in YAML. Just as
a refresher, here is the basic header we looked at:

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "29 August 2019"
output: pdf_document:

toc: true

This header provides instructions for what to do when the document is ren-
dered, gives instructions to render the document as a PDF (via LaTeX), and
inserts a title, author, date, and table of contents at the beginning.

6In RStudio you can also use dollar signs to delimit MathJax equations as in LaTeX.

244 12 Presenting in a Variety of Formats with R Markdown

We also have the option to include other formatting options, many of which
we would include in a knitr LaTeX document’s preamble. You include these at
the top level, i.e. without being tabbed. R Markdown refers to these options
as “metadata”. For example, to change the font size to 11 point we could use:

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "30 November 2019"
output: pdf_document:

toc: true
fontsize: 11pt

We could double-space the PDF document with a similar top-level en-
try: linestretch: 2.7 To find more options for PDF documents, type
?pdf_document into your R console. Note that these options will only affect
your PDF document, not a rendered HTML file.

Remember from Chapter 3 that we can specify rendering instructions for mul-
tiple output formats in the same header. Here is a longer header, building on
what we just saw:

title: "An Example rmarkdown Article"
author: "Christopher Gandrud"
date: "15 January 2019"
output:

pdf_document:
latex_engine: xelatex
number_sections: yes
toc: yes

html_document:
toc: no
theme: "flatly"

linestretch: 2
fontsize: 11pt
bibliography:

- main.bib
- packages.bib

Ok, let’s go through this in detail. We have already seen the title,
author, date, linestretch, and fontsize options. Notice that we used

71 would be for single space and 1.5 would be for one and a half spacing.

12.2 Further Customizability with rmarkdown 245

latex_engine to set the LaTeX engine to XeLaTeX, which is useful for
documents that include non-standard English characters. We also specified
with number_sections that the PDF document should have numbered sec-
tion headings.

For the HTML version of the document we do not want a table of contents
as we set toc: no. We specified a CSS theme called Flatly for our HTML
document using theme: "flatly". As of this writing, rmarkdown has a built-
in ability to use a range of themes from Bootswatch (https://bootswatch
.com/). Alternatively, you can link to a custom CSS file with the css option.
Use html_document to see other options. Notice that we can use no and yes
instead of false and true, respectively.

We linked to two BibTeX files with the bibliography option. Using Pandoc
syntax, the references will apply to both the PDF and HTML documents.

If you want to also enable the creation of a Microsoft Word document, include
output: word_document in the header.

Bibliographies with Pandoc

Pandoc via rmarkdown allows us to insert citations from normal BibTeX files
(see Chapter 11) specified in the header with bibliography. The main dif-
ference is that Pandoc has a different syntax from LaTeX for making in-text
citations. Basic Pandoc citations begin with @ followed by the BibTeX citation
key. Square brackets ([]) create parentheses around the citation. Here is an
example:

This is a citation \[@donoho2009].

Pandoc uses natbib by default, so the citation [@donoho2009] will appear as
(Donoho et al., 2009). To add text before and after the citation inside of the
parentheses, use something like this: [see @donoho2009, 10]; which creates:
(see Donoho et al. 2009, 10). If you do not want the parentheses around the en-
tire citation (only the year) then omit the square brackets. To include only the
year, and not the authors’ surnames, add a minus sign, e.g. [-@donoho2009].
See the table above for more options.

Full bibliographic information for each item that is cited in the text will be
produced at the end of the output document. I suggest placing a heading like
References at the very end of your document so that the bibliography will
be differentiated from the document’s text.

https://bootswatch.com/
https://bootswatch.com/

246 12 Presenting in a Variety of Formats with R Markdown

TABLE 12.1: A Selection of Pandoc In-Text Citations

Markup Result
[@donoho2009] (Donoho 2009)
[-@donoho2009] (2009)
[see @donoho2009] (see Donoho 2009)
[see @donoho2009, 10-11] (see Donoho 2009, 10–11)
[@donoho2009; @Box1973] (Donoho 2009; Box 1973)
@donoho2009 [10-11] Donoho (2009, 10–11)

Footnotes with Pandoc

You can also include footnotes in documents rendered with rmarkdown by
using Pandoc’s footnote syntax. In the text where you would like a footnote
to be located, use: [^NOTE_KEY]. Then at the end of your document, place
[^NOTE_KEY]: The footnote text.8 NOTE_KEYs generally follow the same
rules as BibTeX citation keys, so no spaces. The footnotes will be numbered
sequentially when rendered.

To sum up, here is an example of a document that can be rendered in HTML
or PDF using R Markdown. It includes footnotes and a bibliography.

title: "Minimal rmarkdown Example"
output:

pdf_document:
toc: true

html_document:
toc: false

bibliography: main.bib

This is some text.[^FirstNote]

This is a *knitr* code chunk:

```{r}
plot(cars$speed, cars$dist)
```

8You can actually put this almost anywhere and it will be placed and numbered correctly
in the output document, but I find it easier to organize the footnotes when they are placed
at the end.

12.2 Further Customizability with rmarkdown 247

This is a citation [see @donoho2009, 10].

[^FirstNote]: This is a footnote.

References

We have only covered a small proportion of Pandoc’s capabilities that you can
take advantage of with rmarkdown. For full range of Pandoc’s abilities, see
https://pandoc.org/MANUAL.html.

12.2.1 CSS style files and Markdown

You can customize the formatting of HTML documents created with Mark-
down files using custom CSS style sheets. CSS files allow you to specify the
way a rendered Markdown file looks in a web browser including fonts, margins,
background color, and so on. We don’t have space to cover CSS syntax here.
There are numerous online resources for learning CSS. One of the best ways
may be to just copy a CSS style sheet into a new file and play around with it
to see how things change. A really good resource for this is Google Chrome’s
Developer Tools. The Developer Tools allows you to edit your webpages, in-
cluding their CSS, and see a live preview. It is a really nice way to experiment
with CSS (and HTML and JavaScript).9 There are also numerous pre-made
style sheets available online.10

Rendering R Markdown files to HTML using custom CSS

The simplest way to use a custom CSS style sheet is to include the file path
to the CSS file in an rmarkdown header. As mentioned earlier, rmarkdown
has a number of built-in CSS file options that you can access with style. If
you want to use another custom CSS file, use the css option. If our custom
CSS file is called custom_style.css in the same directory as the R Markdown
document, then a basic header would be:

output:

html_document:

9For more information on how to access and use Developer Tools in Chrome see: https:
//developers.google.com/chrome-developer-tools/.

10One small note: when you create a new style sheet or copy an old one, make sure the
final line is blank. Otherwise you may get an “incomplete final line” error when you render
the document.

https://pandoc.org/MANUAL.html
https://developers.google.com/chrome-developer-tools/
https://developers.google.com/chrome-developer-tools/

248 12 Presenting in a Variety of Formats with R Markdown

css: custom_style.css

If you are using the knitr package to render an R Markdown document to
HTML, you can also include a custom CSS file. First use knit to knit the
document to a plain Markdown file. Then use the markdownToHTML() func-
tion from the markdown package (Allaire et al., 2019a) to render the plain
Markdown document in HTML, including the stylesheet argument with the
path to the CSS file.

12.3 Slideshows with Markdown, R Markdown, and
HTML

Because R Markdown documents can be compiled into HTML files, it is pos-
sible to use them to create HTML5 slideshows.11 There are a number of ad-
vantages to creating HTML presentations with Markdown:

• You can use the relatively simple Markdown syntax.

• HTML presentations are a nice native way to show content on the web.

• HTML presentations can incorporate virtually any content that can be in-
cluded in a webpage. This includes interactive content, like motion charts
created by googleVis (see Chapter 10).

Let’s look at how to create HTML slideshows from Markdown documents
using (a) the rmarkdown package and (b) RStudio’s built-in slideshow files,
called R Presentations. You can also use rmarkdown to create beamer presen-
tations.

HTML5 frameworks

Before getting into the details of how to use R Markdown for presentations
and R Presentations, let’s briefly look more into what an HTML5 slideshow is
and the frameworks that make it possible. HTML5 slideshows rely on a num-
ber of web technologies in addition to HTML5, including CSS, and JavaScript
to create a website that behaves like a LaTeX beamer or PowerPoint presen-
tation. They run in your web browser and you may need to be connected

11The slideshows created by the tools in this section use features introduced in the 5th
version of HTML, i.e. HTML5. In this section I often refer to HTML5 as just HTML for
simplicity.

12.3 Slideshows with Markdown, R Markdown, and HTML 249

to the internet for them to work properly, as key components are often lo-
cated remotely. Most browsers have Full Screen mode you can use to view
presentations.

There are a number of different HTML5 slideshow frameworks that let you cre-
ate and style your slideshows. In all of the frameworks, you view the slideshow
in your web browser and advance through slides with the forward arrow key
on your keyboard. You can go back with the back arrow. Despite these simi-
larities, the frameworks have different looks and capabilities.

12.3.1 HTML slideshows with rmarkdown

It is very easy to create an HTML presentation using rmarkdown and the IO
Slides12 or Slidy13 HTML5 frameworks. The syntax for IO Slides and Slidy
presentations with rmarkdown presentations is almost exactly the same as the
syntax we have seen throughout this chapter. There are two main differences
from the syntax we have seen so far. First, ioslides_presentation for IO
Slides or slidy_presentation for Slidy presentations is the output type to
set in the header. Second, two hashes (##) set a frame’s header.14 For example,

title: "Simple rmarkdown Presentation Example"
author: "Christopher Gandrud"
date: "26 December 2015"
output:

ioslides_presentation:
incremental: true

Access the code

The code to create the following figure is available online.

This code creates a slide show that begins with the slide in the follow-
ing figure. Bullet points will be brought in incrementally because we used
incremental: true under output: ioslides_presentation. Bullets are
created using Markdown list syntax.

Use three dashes (---) to delineate a new slide without a header. You can
style the presentation further using the css option in the header to link to a
custom CSS file.

12https://code.google.com/p/io-2012-slides/
13https://www.w3.org/Talks/Tools/Slidy2/#(1)
14You can create sections with one hash.

https://code.google.com/p/io-2012-slides/
https://www.w3.org/Talks/Tools/Slidy2/#(1)

250 12 Presenting in a Variety of Formats with R Markdown

FIGURE 12.2: R Markdown/IO Slides Example Title Slide

You can create a new IO Slides or Slidy rmarkdown presentation in RStudio
by selecting File R Markdown... then Presentation in the menu on the
left of the window (see figure below). Finally, click HTML (ioslides) or HTML
(Slidy).

12.3.2 LaTeX Beamer slideshows with rmarkdown

As we saw in Chapter 11, creating a presentation with LaTeX beamer involves
rather convoluted syntax. Luckily, we can use rmarkdown to create beamer
presentations using much cleaner Markdown syntax.

An R Markdown beamer presentation uses the same syntax that we just saw
with HTML presentations. The main difference is in the header where we
use output: beamer_presentation. You create a new R Markdown beamer
document in RStudio in a similar way as IO Slides or Slidy. The only difference
is that we select PDF (Beamer). As before, frame titles are delineated with
two hashes (##). You can mark sections in much the same way with one hash.
In the header you can switch the beamer theme, font theme, and color theme
with theme, colortheme, and fonttheme, respectively. For example:

12.3 Slideshows with Markdown, R Markdown, and HTML 251

FIGURE 12.3: Create New R Markdown Presentation in RStudio

output:
beamer_presentation:

incremental: true
theme: "Bergen"
colortheme: "crane"
fonttheme: "structurebold"

Note that themes are placed in quotation marks. You can also include a cus-
tom template with the template option followed by the path to the custom
template file.

12.3.3 Slideshows with Markdown and RStudio’s R Presenta-
tions

Another easy, but less customizable way to create HTML slideshows is with
RStudio’s R Presentation documents. To get started, open RStudio and click
File, New, then R Presentation. RStudio will then ask you to give the pre-

252 12 Presenting in a Variety of Formats with R Markdown

FIGURE 12.4: rmarkdown/Beamer Example Title Slide

sentation a name and save it in a particular file. The reason RStudio does this
is because an R Presentation is not just one file. Instead, it includes:

• A .Rpres file, which is very similar to a knitr Markdown .Rmd file.

• A .md Markdown file created from the .Rpres file.

• knitr cache and figure folders, also created from the .Rpres file.

Editing and compiling the presentation

You change the presentation’s content by editing the .Rpres file using the
normal knitr Markdown syntax we’ve covered. The only difference is how you
create new slides. Luckily, the syntax for this is very simple. Type the slide’s
title, then at least three equal signs (===). For example,

This is an Example .Rpres Slide Title
===

12.3 Slideshows with Markdown, R Markdown, and HTML 253

The very first slide is automatically the title slide and will be formatted dif-
ferently from the rest.15 Here is an example of a complete .Rpres file:

Example R Presentation
===

Christopher Gandrud

1 July 2019

Access the Code
===

The code to create the following figure is available online.

To access it we type:

```{r, eval=FALSE}
# Access and run the code to create a caterpillar plot

devtools::source_url("http://bit.ly/VRKphr")
```

Caterpillar Plot
===

```{r, echo=FALSE, message=FALSE}
# Access and run the code to create a caterpillar plot

devtools::source_url("http://bit.ly/VRKphr")
```

Fertilizer Consumption Map (2003)
===

```{r CreategvisGeoMap, echo=FALSE, message=FALSE, results='asis'}
# Create geo map of global fertilizer consumption for 2003
devtools::source\_url("http://bit.ly/VNnZxS")
```

This example includes four slides and three code chunks. The last code chunk
uses the googleVis package to create the global map of fertilizer consumption
we saw earlier. Because the slideshow we are creating is in HTML, the map

15As of this writing, it is a blue slide with white letters.

254 12 Presenting in a Variety of Formats with R Markdown

will be fully dynamic. Note that, like before, you will not be able to see the
map in the RStudio preview, only in a web browser.

To compile the slideshow, either click the Preview button or save the .Rpres
document. When you do this, you can view your updated slideshow in the
Presentation pane. You can navigate through the slideshow using the arrow
buttons at the bottom right of the Presentation pane. If you click the magni-
fying glass icon at the top of the Presentation pane, you will get a much larger
view of the slideshow. You can also view the slideshow in your web browser
by clicking on the More icon, then View in Browser.

Publishing slideshows

You can of course, view your slideshows locally. To share your presenta-
tion with others, you probably want to either publish the presentation to
a standalone HTML file and host it (e.g. with a service like Netlify https:
//www.netlify.com/) or publish it directly to RPubs. For R Presentations,
create a standalone HTML file by clicking the More button in the Presentation
pane, then Save as Webpage.... Under the More button, you can also choose
the option Publish to RPubs....

FIGURE 12.5: RStudio R Presentation Pane

12.4 Publishing HTML Documents Created with R
Markdown

In Chapter 3 we saw how to publish other R Markdown documents compiled
with RStudio to RPubs. The knitr function knit2wp() can be used to post a

https://www.netlify.com/
https://www.netlify.com/

12.4 Publishing HTML Documents Created with R Markdown 255

knitted Markdown file to WordPress16 sites, which are often used for blogging.
In this section we will look at how to publish R Markdown documents using
GitHub.

Standalone HTML files

You can open the HTML file rendered from any R Markdown document in
your web browser. If the HTML file contains the full information for the page
as it generally does when created by rmarkdown, e.g. the file does not depend
on any auxiliary files, you can share this file via email or other means and
anyone with a web browser can open it. We can of course, also send auxiliary
files if need be, but this can get unwieldy.

GitHub Pages

GitHub also offers a free hosting service for webpages. These can be much
more complex than a single HTML file. The simplest way to create one of
these pages is to create a repository with a file called README.Rmd. You
can knit this file and then create your GitHub Page with it. To do this,
go to the Settings, then GitHub Pages on your repository’s main GitHub
website. Then click Automatic Page Generator. This places the contents of
your README.md file in the page and provides you with formatting options.
Click Publish and you will have a new website.

Clicking Publish creates a new orphan branch17 called gh-pages. When these
branches are pushed to GitHub, it will create a website based on a file called
index.html that you include in the branch. This will be the website’s main
page.

If you want to create more customized and larger websites with GitHub
Pages, you can manually create a GitHub Pages orphan branch and push
it to GitHub. This is essentially what slidify did for us with its publish func-
tion. Imagine we have our working directory set as a repository containing an
R Markdown file that we have rendered into an HTML file called index.html.
Let’s create a new orphan branch:

Create orphan
gh-pages branch git checkout --orphan gh-pages

16https://wordpress.com/
17An orphan branch is a branch with a different root from other repository branches.

Another way of thinking about this is that orphan branches have their own history.

https://wordpress.com/

256 12 Presenting in a Variety of Formats with R Markdown

Now add the files, commit the changes and push it to GitHub. Push it to the
gh-pages branch like this

Add files
git add .

Commit changes
git commit -am "First gh-pages commit"

Push branch to GitHub Pages
git push origin gh-pages

A new webpage will be created at: USERNAME.github.io/REPO_NAME.
You can also add custom domain names. For details, see https://help.g
ithub.com/en/articles/using-a-custom-domain-with-github-pages.

12.4.1 Further information on R Markdown

We have covered many of the core capabilities of R Markdown for creating
reproducible research documents. Please see RStudio’s R Markdown docu-
mentation (https://rmarkdown.rstudio.com/) for even more information.
Another tool to look into for interactive results presentation is the shiny pack-
age (Chang et al., 2019). It gives R the capability to create interactive web
applications, not just the static websites that we have covered in this chapter.
This package is well integrated with RStudio. For more information, please
see http://shiny.rstudio.com/.

Chapter summary

In this chapter we learned a number of tools for dynamically presenting our
reproducible research on the web, as well as how to create PDFs with the
simple R Markdown syntax. Though LaTeX and PDFs will likely remain the
main tools for presenting research in published journals and books for some
time to come, choosing to also make your research available in online native
formats can make it more accessible to general readers. It also allows you to
take advantage of interactive tools for presenting your research. R Markdown
also makes it easy to create documents in a variety of formats.

https://help.github.com/en/articles/using-a-custom-domain-with-github-pages
https://help.github.com/en/articles/using-a-custom-domain-with-github-pages
https://rmarkdown.rstudio.com/
http://shiny.rstudio.com/

13
Conclusion

Well, we have completed our journey. The only thing left to do
now is practice, practice, practice. (Shotts Jr., 2012, 432)

In this book we learned a workflow for highly reproducible computational
research and many of the tools needed to actually do it. Hopefully, if you
haven’t already, you will begin using and benefiting from these tools in your
own work. Though we’ve covered enough material in this book to get you well
on your way, there is still a lot more to learn. With most things computational
(possibly most things in general), one of the best ways to continue learning
is to practice and try new things. Inevitably you will hit walls, but there are
almost always solutions that can be found with curiosity and patience. The
R and reproducible research community is extremely helpful when it comes
to finding and sharing solutions. I highly recommend getting involved in and
eventually contributing to this community to get the most out of reproducible
research.1

Before ending the book, I want to briefly address five issues we have not
covered so far that are important for reproducible research: citing reproducible
research, licensing this research, sharing your code with R packages, whether
or not to make your research files public before publishing the results, and
whether or not it is possible to completely future-proof your research.

1A good point of entry into the R reproducible research community is R-bloggers (https:
//www.r-bloggers.com/). The site aggregates many different blogs on R-related topics from
both advanced and relatively new R users. I have found that beyond just consuming other
peoples’ insights, contributing to R-bloggers—having to clearly write down my steps—has
sharpened my understanding of the reproducible research process and enabled me to get
great feedback. Other really useful resources are the R Stack Overflow (https://stackove
rflow.com/questions/tagged/r) and Cross Validated (https://stats.stackexchange.co
m/questions/tagged/r) sites.

257

https://www.r-bloggers.com/
https://www.r-bloggers.com/
https://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/questions/tagged/r
https://stats.stackexchange.com/questions/tagged/r
https://stats.stackexchange.com/questions/tagged/r

258 13 Conclusion

13.1 Citing Reproducible Research

There are a number of well-established methods for citing presentation doc-
uments, especially published articles and books. However, as we discussed in
the beginning, these documents are just the advertising for research findings
rather than the actual research (Buckheit and Donoho, 1995; Donoho, 2010,
385). If other researchers are going to use the data and source code used
to create the findings in their own work, they need a way of actually citing
the particular data and source code they used. Citing data and source code
presents unique problems. Data and source code can change and be updated
over time in a way that published articles and books generally are not. As
such we have a much less developed, or at least less commonly used set of
standards for citing these types of materials.

One possibility is a standard for citing quantitative data sets laid out by
Altman and King (2007; see also King, 2007). They argue that quantitative
data set citations should:

• allow a reader to quickly understand the nature of the cited data set,

• unambiguously identify a particular version of the data set, and

• enable reliable location, retrieval, and verification of the data set.

The first issue can be solved by having a citation that includes the author, the
date the data set was made public, and its title. However, these things do not
unambiguously identify the data set, as it may be updated or changed and it
does not enable its location and retrieval. To solve this problem, Altman and
King (2007) suggest that these citations also include:

• a unique global identifier (UGI),

• a universal numeric fingerprint (UNF), and

• a bridge service.

A UGI uniquely identifies the data set. Examples include Document Object
Identifiers (DOI) and the Handel System.2 UGIs by themselves do not uniquely
identify a particular version of a data set. This is where UNFs come in. They
uniquely identify each version of a data set. Finally, a bridge service links the
UGI and UNF to an actual document, usually posted online, so that it can
be retrieved.

There are many ways to register DOIs and Handel UGIs. Most of these also
include means for creating UNFs and a bridge service. Examples of services

2See: http://www.handle.net/.

http://www.handle.net/

13.3 Licensing Your Reproducible Research 259

that store your work and assign it DOIs are figshare3 and Zenodo.4 Zenodo
can be integrated with GitHub so that it will store and create citations for a
specific commit of a GitHub repository whenever you create a tag. For more
information about integrating GitHub and Zenodo, see https://guides.g
ithub.com/activities/citable-code/. Please see Altman and King (2007)
for details of other services.5

Though Altman and King (2007) are interested in data sets, their system
could easily be applied to source code as well. UGIs could identify a source
code file or collection of files. The UNF could identify a particular version and
a bridge service would create a link to the actual files.

13.2 Licensing Your Reproducible Research

In the United States and many other countries, research, including computer
code made available via the internet, is automatically given copyright pro-
tection. However, copyright protection works against the scientific goals of
reproducible research, because work derived from the research falls under the
original copyright protections (Stodden, 2009b, 36). To solve this problem,
some authors have suggested placing code under an open source software li-
cense like the GNU General Public License (GPL) (Vandewalle et al., 2007).
Stodden (2009b) argues that this type of license is not really adequate for mak-
ing available the data, code, and other material needed to reproduce research
findings in a way that enables scientific validation and knowledge growth. I
don’t want to explore the intricacies of these issues here. Nonetheless, they
are important for computational researchers to think about, especially if their
data and source code is publicly available. Two good places to go for more
information are Stodden (2009b) and Creative Commons (2012).

13.3 Sharing Your Code in Packages

Developing R functions and putting them into packages is a good way to en-
able cumulative knowledge development. Many researchers spend a consider-

3https://figshare.com/
4https://zenodo.org/
5The Dataverse Project (https://dataverse.org/) offers a free service to host files that

also uses the Handel System to assign UGIs, UNFs, and provides a bridge service. See
Gandrud (2013a) for a comparison of Dataverse with GitHub and Dropbox for data storage.

https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
https://figshare.com/
https://zenodo.org/
https://dataverse.org/

260 13 Conclusion

able amount of time writing code to solve problems that no one has addressed
yet, or haven’t addressed in a way that they believe is adequate. It is very
useful if they make this code publicly accessible so that others can perhaps
adopt and use it in their own work without having to duplicate the effort
used to create the original functions. Abstracting your code into functions so
that they can be applied to many problems and distributing them in easily
installed packages makes it much easier for other researchers to adopt and
use your code to help solve their research problems. The active community of
researcher/package developers is one of the main reasons that R has become
such a widely used and useful statistical language.

Many of the tools we have covered in this book provide a good basis to start
making and distributing functions. We have discussed many of the R com-
mands and concepts that are important for creating functions. We have also
looked at Git and GitHub, which are very helpful for developing and distribut-
ing packages. Learning about Hadley Wickham’s devtools package is probably
the best next step for you to take to be able to develop and distribute func-
tions in packages. He has an excellent introduction to devtools and R package
development in general at http://r-pkgs.had.co.nz/intro.html#introdu
ction-to-devtools.

RStudio Projects have excellent devtools integration and are certainly worth
using. To begin creating a new package in RStudio, start a new project, prefer-
ably with Git version control (see Section 5.4.1). In the New Project window,
select Package. Now you will have a new Project with all of the files and direc-
tories you need to get started making packages that will hopefully be directly
useful for the computational research community.

13.4 Project Development: Public or Private?

Hopefully I have made a convincing case in this book that research results,
especially in academia, should almost always be highly reproducible. The files
used to create the results need to be publicly available for the research to be
really reproducible.6 During the development of a research project, however,
should files be public or private?

On the one hand, openness encourages transparency and feedback. Other re-
searchers may alert you to mistakes before a result is published. On the other
hand, there are worries that you may be “scooped”. Another researcher might
see your files, take your idea, and publish it before you have a chance to. In

6There are obvious exceptions, such as when a study’s participants’ identities need to
remain confidential.

http://r-pkgs.had.co.nz/intro.html#introduction-to-devtools
http://r-pkgs.had.co.nz/intro.html#introduction-to-devtools

13.5 Is it Possible to Completely Future-Proof Your Research? 261

general, this worry may be a bit overblown. Especially if you use a version
control system that clearly dates all of your file versions, it would be very easy
to make the case that someone has stolen your work. Hopefully this possibility
would discourage any malfeasance. That being said, unlike the clear need to
make research files available after publication, during research development
there are good reasons for both making files public and keeping them private.

Researchers should probably make this decision on a case-by-case basis. In
general, I choose to make my research repositories public to increase trans-
parency and encourage feedback. The community of researchers in my field
is relatively small and close knit. It would be hard for someone to take my
work and pass it off as their own. This is especially true if many people al-
ready know that they are my ideas, because I have made by research files
publicly available. Regardless, cloud storage systems like GitHub make it easy
to choose whether or not to make your files public or private. You can easily
keep a repository private while you create a piece of research and then make
it public once the results are published.

13.5 Is it Possible to Completely Future-Proof Your Re-
search?

In this book we’ve looked at a number of ways to help future-proof your
research so that future researchers (and you) are able to actually reproduce
it. These included storing your research in text files, clearly commenting on
your code, and recording information about the software environment you
used by, for example, recording your session info. Are these steps enough to
completely ensure that your research will always be reproducible? The simple
answer is probably no. Software changes, but it is difficult to foresee what these
changes will be. Nonetheless, beyond what we have discussed so far there are
other steps we can take to make our reproducible research as future-proof as
possible.

One of the main obstacles to completely future-proofing your research is that
no (or at least very few) pieces of software are complete. R packages are
updated. R is updated. Your operating system is updated. These and other
software programs discussed in this book may not only be updated, but also
discontinued. Changes to the software you used to find your results may change
the results someone gets reproducing your research. This problem becomes
larger as you use more pieces of software in your research.

That being said, many of the software tools we have learned about in this book
have future-proofing at their heart. TeX, the typesetting system that underlies

262 13 Conclusion

LaTeX, is probably the best example. TeX was created in 1978 and has since
been maintained with future-proofing in mind (Knuth, 1990). Though changes
and new versions continue to be made, we are still able to use TeX to recreate
documents in their original intended form even if they were written over thirty
years ago. We also saw that, though R and especially R packages change
rapidly, the Comprehensive R Archive Network stores and makes accessible
old versions (as the name suggests). Old versions can be downloaded by anyone
wishing to reproduce a piece of research, provided the original researcher has
recorded which versions they used. One approach is to use the packrat R
package (Ushey et al., 2018) for managing the packages your project depends
on. Some of the other technologies discussed in this book may be less reliable
over time, so some caution should be taken if you intend to use them to create
fully reproducible research.

In addition to documenting what software you used and using software that
archives old versions, some have suggested another step to future-proof repro-
ducible research: encapsulate it in a virtual machine that is available on a
cloud storage system. See in particular Howe (2012). A virtual reproducible
research machine would store a “snapshot [of] a researcher’s entire working
environment, including data, software, dependencies, notes, logs, scripts, and
more”. If the virtual machine is stored on a cloud server, then anyone wanting
to reproduce the research could access the full computing environment used
to create a piece of research (Howe, 2012, 36). As long as others could run
the virtual machine and access the cloud storage system, you would not have
to worry about changing software, because the exact versions of the software
you used would be available in one place.

We don’t have space to cover the specifics of how to create a virtual machine
in this book. However, using a virtual machine is a tool that can be added to
the workflow discussed in this book, rather than being a replacement for it.
Carefully documenting your steps, clearly organizing your files, and dynami-
cally tying together your data gathering, analysis, and presentation files helps
you and others understand how you created a result after a research project’s
results have been published. Being able to understand your research will give
it higher research impact, as others can more easily build on it. The steps
covered in this book will still encourage you to have better work habits from
the beginning of your research projects even if you will be using a virtual
machine. The tools and workflow will also continue to facilitate collaboration
and make it easier to dynamically update your research documents when you
make changes.

Now, get started with reproducible research!

Bibliography

Allaire, J., Horner, J., Xie, Y., Marti, V., and Porte, N. (2019a). markdown:
Render Markdown with the C Library ’Sundown’. R package version 1.1.

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wick-
ham, H., Cheng, J., Chang, W., and Iannone, R. (2019b). rmarkdown:
Dynamic Documents for R. R package version 2.0.

Altman, M. and King, G. (2007). A proposed standard for the scholarly
citation of quantitative data. D-Lib Magazine, 13(3/4).

Arel-Bundock, V. (2018). countrycode: Convert Country Names and Country
Codes. R package version 1.1.0.

Bååth, R. (2012). The state of naming conventions in R. The R Journal,
4(2):74–75.

Bache, S. M. and Wickham, H. (2014). magrittr: A Forward-Pipe Operator
for R. R package version 1.5.

Bacon, F. R. (1859). Opera quaedam hactenus inedita. Vol. I. containing
I.–Opus tertium. II.–Opus minus. III.–Compendium philosophiae. Google
eBook. Retrieved from http://books.google.com/books?id=wMUKAAAAYA
AJ.

Ball, R. and Medeiros, N. (2011). Teaching integrity in empirical research: A
protocol for documenting data management and analysis. The Journal of
Economic Education, 43(2):182–189.

Barr, C. D. (2012). Establishing a culture of reproducibility and openness in
medical research with an emphasis on the training years. Chance, 25(3):8–
10.

Bowers, J. (2011). Six steps to a better relationship with your future self. The
Political Methodologist, 18(2):2–8.

Box, G. E. and Cox, D. R. (1964). An analysis of transformations. Journal
of the Royal Statistical Society. Series B (Methodological), 26:211–252.

Braude, S. (1979). ESP and Psychokinesis. A Philosophical Examination.
Temple University Press, Philadelphia, PA.

Buckheit, J. B. and Donoho, D. L. (1995). Wavelab and reproducible research.

263

http://books.google.com/books?id=wMUKAAAAYAAJ
http://books.google.com/books?id=wMUKAAAAYAAJ

264 13 Bibliography

In Antoniadis, A., editor, Wavelets and Statistics, pages 55–81. Springer,
New York.

Burbidge, J. B. and Robb, L. (1988). Alternative transformations to handle ex-
treme values of the dependent variable. Journal of the American Statistical
Association, 83(401):123–127.

Bürkner, P.-C. (2020). brms: Bayesian Regression Models using ’Stan’. R
package version 2.11.0.

Chang, W. (2012). R Graphics Cookbook: Practical Recipes for Visualizing
Data. O’Reilly Media, Inc., Sebastopol, CA.

Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. (2019). shiny:
Web Application Framework for R. R package version 1.4.0.

Crawley, M. J. (2005). Statistics: An Introduction Using R. John Wiley &
Sons Ltd., Chichester.

Crawley, M. J. (2013). The R Book. John Wiley & Sons Ltd., Chichester, 2nd
edition.

Creative Commons (2012). Data. http://wiki.creativecommons.org/Data.

Donoho, D. L. (2002). How to be a highly cited author in mathematical
sciences. in-cites. http://www.in-cites.com/scientists/DrDavidDono
ho.html.

Donoho, D. L. (2010). An invitation to reproducible computational research.
Biostatistics, 11(3):385–388.

Donoho, D. L., Maleki, A., Shahram, M., Rahman, I. U., and Stodden, V.
(2009). Reproducible research in computational harmonic analysis. Com-
puting in Science & Engineering, 11(1):8–18.

Dowle, M. and Srinivasan, A. (2019). data.table: Extension of ‘data.frame‘. R
package version 1.12.8.

Ehrenberg, A. S. C. (1977). Rudiments of numeracy. Journal of the Royal
Statistical Society. Series A General, 140(3):277–297.

Fomel, S. and Claerbout, J. F. (2009). Reproducible Research. Computing in
Science & Engineering, 11(1):5–7.

Frazier, M. (2008). Bash parameter expansion. The Linux Journal. Available
at: http://www.linuxjournal.com/content/bash-parameter-expansio
n.

Galili, T., Rowlingson, B., Hejblum, B., Dason, Grothendieck, G., Daroczi, G.,
Andrew, H., James, Leeper, T., VitoshKa, Xie, Y., Friendly, M., Rohmeyer,
K., Menne, D., Hunt, T., Hiramura, T., Boessenkool, B., Godfrey, J., Allard,
T., Chen, C., Hill, J., and Park, C.-Y. (2018). installr: Using R to Install

http://wiki.creativecommons.org/Data
http://www.in-cites.com/scientists/DrDavidDonoho.html
http://www.in-cites.com/scientists/DrDavidDonoho.html
http://www.linuxjournal.com/content/bash-parameter-expansion
http://www.linuxjournal.com/content/bash-parameter-expansion

13.5 Bibliography 265

Stuff (Such As: R, ’Rtools’, ’RStudio’, ’Git’, and More!). R package version
0.20.0.

Gandrud, C. (2013a). Github: A tool for social data set development and
verification in the cloud. The Political Methodologist, 20(2):2–7.

Gandrud, C. (2013b). The diffusion of financial supervisory governance ideas.
Review of International Political Economy, 20(4):881–916.

Gandrud, C. and Grafström, C. (2015). Inflated expectations: How govern-
ment partisanship shapes bureaucrats’ inflation forecasts. Political Science
Research and Methods. Available at: http://dx.doi.org/10.1017/psrm.
2014.34.

Gelman, A. (2011). Tables as graphs: The Ramanujan principle. Significance,
8(4):183.

Gesmann, M. and de Castillo, D. (2019). googleVis: R Interface to Google
Charts. R package version 0.6.4.

Healy, K. (2018). Data Visualization: A Practical Introduction. Princeton
University Press.

Henry, L. and Wickham, H. (2019). purrr: Functional Programming Tools. R
package version 0.3.3.

Herndon, T., Ash, M., and Pollin, R. (2014). Does high public debt consis-
tently stifle economic growth? a critique of Reinhart and Rogoff. Cambridge
Journal of Economics, 38(2):257–279.

Hlavac, M. (2018). stargazer: Well-Formatted Regression and Summary Statis-
tics Tables. R package version 5.2.2.

hong Chan, C. and Leeper, T. J. (2018). rio: A Swiss-Army Knife for Data
I/O. R package version 0.5.16.

Howe, B. (2012). Virtual appliances, cloud computing, and reproducible re-
search. Computing in Science & Engineering, 14(4):36–41.

Hyndman, R. J. (2010). Transforming data with zeros. Available at: http://
robjhyndman.com/hyndsight/transformations/. Accessed March 2015.

Kelly, C. D. (2006). Replicating empirical research in behavioral ecology:
How and why it should be done but rarely ever is. The Quarterly Review
of Biology, 81(3):221–236.

King, G. (1995). Replication, replication. PS: Political Science and Politics,
28(3):444–452.

King, G. (2007). An introduction to the dataverse network as an infrastructure
for data sharing. Sociological Methods & Research, 36(2):173–199.

http://dx.doi.org/10.1017/psrm.2014.34
http://dx.doi.org/10.1017/psrm.2014.34
http://robjhyndman.com/hyndsight/transformations/
http://robjhyndman.com/hyndsight/transformations/

266 13 Bibliography

King, G., Keohane, R., and Verba, S. (1994). Designing Social Inquiry. Prince-
ton University Press, Princeton.

Kitzes, J., Turek, D., and Deniz, F., editors (2018). The Practice of Repro-
ducible Research: Case Studies and Lessons from the Data-Intensive Sci-
ences. University of California Press, Oakland, CA.

Kluyver, T., Angerer, P., Schulz, J., and Ram, K. (2019). IRkernel: Native R
Kernel for the ’Jupyter Notebook’. R package version 1.1.

Knuth, D. E. (1990). The future of tex and metafont. NTG: Maps, 5:145.

Knuth, D. E. (1992). Literate Programming. CSLI Lecture Notes. Center for
the Study of Language and Information, Stanford, CA.

Kross, S. (2018). The Unix Workbench. self published. Accessible at: https:
//seankross.com/the-unix-workbench/.

Leifeld, P. (2017). texreg: Conversion of R Regression Output to LaTeX or
HTML Tables. R package version 1.36.23.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using
literate data analysis. In Härdle, W. and Rönz, B., editors, Compstat 2002:
Proceedings in Computational Statistics, pages 575–580. Physica Verlag, Hei-
delberg. http://www.stat.uni-muenchen.de/~leisch/Sweave.

Lykken, D. T. (1968). Statistical significance in psychological research. Psy-
chologial Bulletin, 70:151–159.

MacFarlane, J. (2019). Pandoc: A Universal Document Converter. Version
2.7.3.

Makel, M. C. and Plucker, J. A. (2014). Facts are more important than novelty:
Replication in the education sciences. Educational Researcher, 43(6):304–
316.

Matloff, N. (2011). The Art of Programming in R: A Tour of Statistical
Programming Design. No Starch Press, San Francisco.

Mesirov, J. P. (2010). Accessible reproducible research. Science,
327(5964):415–416.

Meyer, A. (2006). Repeating patterns of mimicry. PLoS Biol, 4(10).

Munzert, S., Rubba, C., Meißner, P., and Nyhuis, D. (2015). Automated Data
Collection with R: A Practical Guide to Web Scraping and Text Mining.
Wiley, Chichester.

Murrell, P. (2011). R Graphics. Chapman & Hall/CRC Press, Boca Raton,
FL, 2nd edition.

Müller, K. (2017). here: A Simpler Way to Find Your Files. R package version
0.1.

https://seankross.com/the-unix-workbench/
https://seankross.com/the-unix-workbench/
http://www.stat.uni-muenchen.de/~leisch/Sweave

13.5 Bibliography 267

Müller, K. and Walthert, L. (2019). styler: Non-Invasive Pretty Printing of
R Code. R package version 1.2.0.

Müller, K. and Wickham, H. (2019). tibble: Simple Data Frames. R package
version 2.1.3.

Nagler, J. (1995). Coding style and good computing practices. PS: Political
Science and Politics, 28(3):488–492.

Nosek, B. A., Spies, J. R., and Motyl, M. (2012). Scientific utopia: II. Re-
structring incentives and practices to promote truth over publishability.
Perspectives on Psychological Science, 7(6):615–631.

O’Neal, C. and Schutt, R. (2013). Doing Data Science: Straight Talk from the
Frontline. O’Reilly Media Inc., Sebastopol, CA.

Ooms, J., Temple Lang, D., and Hilaiel, L. (2018). jsonlite: A Robust, High
Performance JSON Parser and Generator for R. R package version 1.6.

Pemstein, D., Meserve, S. A., and Melton, J. (2010). Democratic compromise:
A latent variable analysis of ten measures of regime type. Political Analysis,
18(4):426–449.

Peng, R. D. (2009). Reproducible research and biostatistics. Biostatistics,
10(3):405–408.

Peng, R. D. (2011). Reproducible research in computational science. Science,
334:1226–1227.

Peng, R. D. (2014). The real reason reproducible research is important. Sim-
ply Statistics. http://simplystatistics.org/2014/06/06/the-real-
reason-reproducible-research-is-important/.

Piwowar, H. A., Day, R. S., and Fridsma, D. B. (2007). Sharing detailed
research data is associated with increased citation rate. PLoS ONE, 2(3):1–
5.

R Core Team (2019). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. http:
//www.R-project.org/.

Ramsey, N. (2011). Noweb: A simple, extensible tool for literate programming.
http://www.cs.tufts.edu/~nr/noweb/.

Reinhart, C. and Rogoff, K. (2010). Growth in a time of debt. American
Economic Review: Papers & Proceedings, 100.

Rinker, T. and Kurkiewicz, D. (2019). pacman: Package Management Tool.
R package version 0.5.1.

Rokem, A., Marwick, B., and Staneva, V. (2018). Assessing reproducibility. In
Kitzes, J., Turek, D., and Deniz, F., editors, The Practice of Reproducible

http://simplystatistics.org/2014/06/06/the-real-reason-reproducible-research-is-important/
http://simplystatistics.org/2014/06/06/the-real-reason-reproducible-research-is-important/
http://www.R-project.org/
http://www.R-project.org/
http://www.cs.tufts.edu/~nr/noweb/

268 13 Bibliography

Research: Case Studies and Lessons from the Data-Intensive Sciences, pages
3–18. University of California Press, Oakland, CA.

RStudio, Inc. (2019). RStudio: Integrated development environment for R.
Boston, MA. Version 1.2.1572.

Shotts Jr., W. E. (2012). The Linux Command-line: A Complete Introduction.
No Starch Press, San Francisco.

Stodden, V. (2009a). The reproducible research standard: Reducing legal
barriers to scientific knowledge and innovation. In Communia: Global Sci-
ence & Economics of Knowledge-Sharing Institutions Torino, Italy June
30. http://www.stanford.edu/~vcs/talks/VictoriaStoddenCommuniaJ
une2009-2.pdf.

Stodden, V. (2009b). The legal framework for reproducible scientific research.
Computing in Science & Engineering, 11(1):35–40.

Temple Lang, D. (2020). XML: Tools for Parsing and Generating XML Within
R and S-Plus. R package version 3.99-0.2.

Temple Lang, D. and the CRAN team (2020). RCurl: General Network
(HTTP/FTP/...) Client Interface for R. R package version 1.95-4.13.

Therneau, T. M. (2019). survival: Survival Analysis. R package version 3.1-8.

Tufte, E. R. (2001). The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, 2nd edition.

Ushey, K., McPherson, J., Cheng, J., Atkins, A., and Allaire, J. (2018). pack-
rat: A Dependency Management System for Projects and their R Package
Dependencies. R package version 0.5.0.

Vaidyanathan, R., Xie, Y., Allaire, J., Cheng, J., and Russell, K. (2019). html-
widgets: HTML Widgets for R. R package version 1.5.1.

van Belle, G. (2008). Statistical Rules of Thumb. John Wiley & Sons, Hoboken,
NJ, 2nd edition.

Vandewalle, P. (2012). Code sharing is associated with research impact in
image processing. Computing in Science & Engineering, 14(4):42–47.

Vandewalle, P., Barrenetxea, G., Jovanovic, I., Ridolfi, A., and Vetterli, M.
(2007). Experiences with reproducible research in various facets of signal
processing research. Acoustics, Speech and Signal Processing, 4:1253–1256.

White, J. M. (2019). ProjectTemplate: Automates the Creation of New Statis-
tical Analysis Projects. R package version 0.9.0.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer,
New York, 2nd edition.

http://www.stanford.edu/~vcs/talks/VictoriaStoddenCommuniaJune2009-2.pdf
http://www.stanford.edu/~vcs/talks/VictoriaStoddenCommuniaJune2009-2.pdf

13.5 Bibliography 269

Wickham, H. (2010). A layered grammar of graphics. Journal of Computa-
tional and Graphical Statistics, 19(1):3–28.

Wickham, H. (2014a). Advanced R. Chapman & Hall/CRC Press, Boca Raton,
FL.

Wickham, H. (2014b). Tidy Data. Journal of Statistical Software, 59(10):1–23.

Wickham, H. (2019a). httr: Tools for Working with URLs and HTTP. R
package version 1.4.1.

Wickham, H. (2019b). rvest: Easily Harvest (Scrape) Web Pages. R package
version 0.3.5.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke,
C., Woo, K., and Yutani, H. (2019a). ggplot2: Create Elegant Data Visual-
isations Using the Grammar of Graphics. R package version 3.2.1.

Wickham, H., François, R., Henry, L., and Müller, K. (2019b). dplyr: A Gram-
mar of Data Manipulation. R package version 0.8.3.

Wickham, H. and Henry, L. (2019). tidyr: Tidy Messy Data. R package version
1.0.0.

Wickham, H., Hester, J., and Chang, W. (2019c). devtools: Tools to Make
Developing R Packages Easier. R package version 2.2.1.

Wickham, H. and Ruiz, E. (2019). dbplyr: A ’dplyr’ Back End for Databases.
R package version 1.4.2.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy,
R. T., Haddock, S. H. D., Huff, K., Mitchell, I. M., Plumbley, M. D.,
Waugh, B., White, E. P., and Wilson, P. (2012). Best practices for sci-
entific computing. arXiv, 29 November 2012:1–6. Available at: http:
//arxiv.org/pdf/1210.0530v3.

World Bank (2018). World Development Indicators.

Xie, Y. (2015). R Markdown: The Definitive Guide. Chapman & Hall/CRC,
Boca Raton, Florida.

Xie, Y. (2018). animation: A Gallery of Animations in Statistics and Utilities
to Create Animations. R package version 2.6.

Xie, Y. (2020a). bookdown: Authoring Books and Technical Documents with
R Markdown. R package version 0.17.

Xie, Y. (2020b). knitr: A General-Purpose Package for Dynamic Report Gen-
eration in R. R package version 1.27.

Xie, Y. (2020c). tinytex: Helper Functions to Install and Maintain TeX Live,
and Compile LaTeX Documents. R package version 0.19.

http://arxiv.org/pdf/1210.0530v3
http://arxiv.org/pdf/1210.0530v3

270 13 Bibliography

Xie, Y. (2020d). xfun: Miscellaneous Functions by ’Yihui Xie’. R package
version 0.12.

Index

absolute file path, 71
author-year citations, 228
Awk, 160

Bash, 159, 160
beamer, 248, 250–251
bibliography, 245
Bootswatch, 245

Flatly, 245
Bourne shell, 160

child directory, 70
comma separated file format, 89
component selector, 130, 198
contingency table, 131
CRAN, 47

mirror, 20
CSS, 195, 245, 247, 248
CSV, 88, 89

Dropbox, 90

escape character, 71
Excel, 122

Gawk, 160
GDPR, 10
GIF, 208
git

.gitignore, 102
add, 256
branches, 101
checkout, 98
clone, 105
commit, 256
ignore, 102
orphan branch, 255
pull, 108

push, 256
remote repository, 105
repo, 93
repos, 96
repositories, 96
repository, 93
tags, 100

GitHub, xiii, 58, 255
gh-pages branch, 255
Markdown, 58
Pages, 255

Google Chrome
Developer Tools, 247

Google Drive, 90

Harvard style citations, 228
Haskell, 160
HTML, 247

alt, 194
caption, 176
height, 195
img, 194
px, 195
src, 195
table border, 176
tag, 194
tags, 175
tbody, 176
thead, 176
width, 195

HTML5, 248

ImageMagick, 20
in-text citation, 245
infinity, 140

JavaScript, 247, 248
JPEG, 192

271

272 Index

Julia, 29, 65, 159, 160
Jupyter, 58

kebab-case, 73
knitr option

cache, 155, 164
cache.extra, 156
dependson, 156
dev, 199
echo, 155, 179
engine, 159
error, 155
eval, 155
fig.align, 197
fig.cap, 197
fig.ext, 238
fig.path, 196
include, 154
message, 155
out.height, 196
out.width, 196
results, 155, 168, 179
root.dir, 77
size, 156
warning, 155

LaTeX
ampersand, 170
beamer slides, 233
begin document, 218
caption, 172, 193
center, 172
centre, 169
cite, 193
cross-references, 226
environment, 169
figure, 198
figure environment, 193
float, 193
footnotes, 226
includegraphics, 192
label, 193
landscape, 184
list appear, 234
outlines, 233

packages, 218
preamble, 244
scriptsize, 193
Sexpr, 158
table, 169, 171, 180, 182
table of contents, 233
tabular, 169, 170, 180, 182
texttt, 157
textwidth, 193, 196
verb, 157

LaTeX command
allowframebreaks, 233
author, 218
bibliography, 228
bibliographystyle, 228
chapter, 222
citation, 229
cite, 228
date, 218
documentclass, 217, 233
emph, 221, 223
frame, 233, 234
frametitle, 233
hline, 222
href, 221
hrulefill, 222
hspace, 222
includegraphics, 24
item, 225
label, 226
maketitle, 218
pageref, 226
paragraph, 222
part, 222
ref, 226
section, 222, 233
Sexpr, 221
subparagraph, 222
subsection, 222
tableofcontents, 233
textbf, 223
thanks, 221
title, 218
titlepage, 233
usecolortheme, 233

Index 273

useinnertheme, 233
useoutertheme, 233
usepackage, 218
usetheme, 233
vspace, 222

LaTeX environment
abstract, 219
body, 218
document, 233
enumerate, 225
figure, 204, 226
frame, 233
itemize, 225
table, 226
tabular, 222
verbatim, 234

LaTeX package
array, 170
graphics, 185
graphicx, 192
hyperref, 226
lscape, 184
natbib, 245
url, 218

LaTeXbeamer, 250–251
link rot, 90
Linux, 20
literate programming, 28, 30
long formatted data, 132

Makefile, xiii
Markdown

bold, 241
footnotes, 246
italics, 241
lines, 240
new line, 241
special characters, 241

matrix transpose, 133
missing values, 130

NA, 130
Netlify, 254

outliers, 137

Pandoc, 13, 15
footnotes, 246

parent directory, 70
PATH, 20
pdfLaTeX, 61, 241
pipe, 44, 76
PNG, 192
PowerPoint, 248
Python, 29, 65, 159, 160

R
component selector, 39
data frame, 37, 132
inf, 140
order, 136
ordering data, 136
packages, 19
renaming variables, 135
reshaping data, 132
session info, xiv
sort, 136
subset, 137
subsetting data, 137

R function
<-, 35
?, 43
$, 39
%>%, 44, 76, 80
aes, 204
apply, 127
arrange, 136
as.factor, 143
attach, 40
boxplot, 198
brm, 185
c, 188
cat, 78, 188
cbind, 37, 143
character, 143
class, 36
combine, 37
cord_flip, 207
cut, 142
data.frame, 37, 38, 132
desc, 136

274 Index

detach, 40
dir.create, 77, 78
download.file, 123
download.file(), xiii
duplicated, 145
factor, 141, 143
file.copy, 79
file.create, 77
file.rename, 78
fix, 131
geom_hline, 207
geom_line, 203
geom_pointrange, 206
getURL, 24
getwd, 75
ggplot, 201–208
ggplot2, 207
gvisGeoChart, 209
head, 40, 76
here, 76
hist, 164, 198
history, 46
import, xiv, 24, 91, 106, 123
include_graphics, 24, 195
install.packages, 47
kable, 167, 177–178, 238
knit, 62
knit2html, 62, 63
knit2pdf, 63
knit2wp, 254
lapply, 231
library, 47, 231
list.files, 76
lm, 178
load, 45
ls, 45
markdownToHTML, 62, 248
mean, 39, 158
merge, 24, 143, 144
methods, 179
names, 38, 129, 130
ncol, 130
nrow, 130
numberic, 143
options, 46, 158

order, 136
pairs, 198, 200
paste0, 107, 124
pivot_longer, 133
pivot_wider, 134
plot, 198
plot.survfit, 205
print, 180, 210
print.xtable, 180
publish, 255
read.csv, 123
read.dta, 121
read.table, 24, 121, 123
readHTMLTable, 126
rename, 135
render, 63
reorder, 207
reshape, 133
rio, 122
rm, 45
rnorm, 163
round, 44, 158
save, 46
save.image, 45
scale_color_discrete, 204
scale_linetype, 204
search, 40
select, 147
sessionInfo, 74
set.seed, 163
setwd, 76, 114
source, 49, 114, 115, 161
source(), xiv
source_gist, 162
source_url, 91, 162, 200
stanplot, 208
str, 129
subset, 137
summary, 130, 178
system, 83, 161
table, 131
tail, 129
tempfile, 123
texi2pdf, 62
texreg, 175

Index 275

tibble, 131
toBibTeX, 230
toLatex, 74
union, 144
unlink, 78
View, 131
WDI, xiii
WDIsearch, 125
with, 40
write.csv, 89, 177
write.table, 88
write_bib, 230
xlab, 204
xtable, 178–181
ylab, 204

R package
brms, 185
data.table, 145
dbplyr, 145
dplyr, 44
ggplot2, 201–208
googleVis, 248
installr, 20
magrittr, 44
markdown, 15
ProjectTemplate, 73
rio, 24
rmarkdown, 15
Rtools, 20
shiny, 256
styler, 30
tidyr, 133
xfun, 20

R Presentation, 251
RCurl, 21
README file, xiv
relative file path, 71
rename variable, 135
reshape data, 132
root directory, 70
RPubs, 58
RStudio

Environment tab, 131
Presentation pane, 254
R Presentation, 251

Ruby, 159, 160

SAS, 160
Scala, 36
shell command, 80

cd, 80, 96
cp, 83
echo, 81, 96
git add, 97, 102
git branch, 101
git checkout, 98, 101
git clone, 105
git commit, 97
git init, 97
git merge, 102
git pull, 108
git push, 105, 106
git remote, 105
git rm, 104
git status, 98
git tag, 100
head, 80
ls, 80
make, 119
mkdir, 81, 96
mv, 82
options, 82
pwd, 80
rm, 82
tree, 70

Shiny, 48
SQL, 48
Stan, 159, 160

tab separated file format, 89
Terminal, 21
tidy data, 132
Tidyverse, 132
time-series cross-sectional, 132
TSCS, 132
TSV, 88
Twitter, 65
type safe, 36

UTF-8, 61

276 Index

wide formatted data, 132
wildcard, 117, 118
Windows, 20
working directory, 71

XeLaTeX, 61, 245

YAML, 50, 197

Zenodo, 90
Zsh, 79

	Preface
	About the Author
	Stylistic Conventions
	Additional Resources
	I Getting Started
	Introducing Reproducible Research
	What Is Reproducible Research?
	Why Should Research Be Reproducible?
	For science
	For you

	Who Should Read This Book?
	Academic researchers
	Students
	Instructors
	Editors
	Private sector researchers

	The Tools of Reproducible Research
	Why Use R, knitr/R Markdown, and RStudio for Reproducible Research?

	Installing the main software
	Installing markup languages
	GNU Make
	Other tools

	Book Overview
	How to read this book
	Reproduce this book
	Contents overview

	Getting Started with Reproducible Research
	The Big Picture: A Workflow for Reproducible Research
	Reproducible theory

	Practical Tips for Reproducible Research
	Document everything!
	Everything is a (text) file
	All files should be human readable
	Explicitly tie your files together
	Have a plan to organize, store, and make your files available

	Getting Started with R, RStudio, and knitr/R Markdown
	Using R: The Basics
	Objects
	Functions
	The workspace and history
	R history
	Global R options
	Installing new packages and loading functions

	Using RStudio
	Using knitr and R Markdown: The Basics
	What knitr does
	What rmarkdown does
	File extensions
	Code chunks
	Global chunk options
	knitr package options
	Hooks
	knitr, R Markdown, and RStudio
	knitr and R
	R Markdown and R

	Appendix: Jupyter Interactive Notebooks
	Appendix: knitr and Lyx
	Getting Started with File Management
	File Paths and Naming Conventions
	Root directories
	Sub-directories and parent directories
	Working directories
	Absolute vs. relative paths
	Spaces in directory and file names

	Organizing Your Research Project
	Organizing Research with RStudio Projects
	R File Manipulation Functions
	Unix-like Shell Commands for File Management
	File Navigation in RStudio

	II Data Gathering and Storage
	Storing, Collaborating, Accessing Files, and Versioning
	Saving Data in Reproducible Formats
	Storing Your Files in the Cloud: Dropbox
	Storage
	Accessing data
	Collaboration
	Version control

	Storing Your Files in the Cloud: GitHub
	Setting up GitHub: Basic
	Version control with Git
	Remote storage on GitHub
	Accessing on GitHub
	Summing up the GitHub workflow

	RStudio and GitHub
	Setting up Git/GitHub with Projects
	Using Git in RStudio Projects

	Gathering Data with R
	Organize Your Data Gathering: Makefiles
	R Make-like files
	GNU Make

	Importing Locally Stored Data Sets
	Importing Data Sets from the Internet
	Data from non-secure (http) URLs
	Data from secure (https) URLs
	Compressed data stored online
	Data APIs and feeds

	Advanced Automatic Data Gathering: Web Scraping

	Preparing Data for Analysis
	Cleaning Data for Merging
	Get a handle on your data
	Reshaping data
	Renaming variables
	Ordering data
	Subsetting data
	Recoding string/numeric variables
	Creating new variables from old
	Changing variable types

	Merging Data Sets
	Binding
	Merging data frames
	Duplicate columns

	Appendix

	III Analysis and Results
	Statistical Modeling and knitr/R Markdown
	Incorporating Analyses into the Markup
	Full code chunks
	Showing code and results inline
	Dynamically including non-R code in code chunks

	Dynamically Including Modular Analysis Files
	Source from a local file
	Source from a URL

	Reproducibly Random: set.seed()
	Computationally Intensive Analyses

	Showing Results with Tables
	Basic knitr Syntax for Tables
	Table Basics
	Tables in LaTeX
	Tables in Markdown/HTML

	Creating Tables from Supported Class R Objects
	kable for Markdown and LaTeX
	xtable for LaTeX and HTML
	texreg for LaTeX and HTML
	Fitting large tables in LaTeX
	xtable with non-supported class objects
	Creating variable description documents with xtable

	Showing Results with Figures
	Including Non-knitted Graphics
	Including graphics in LaTeX
	Including graphics in Markdown/HTML
	Non-knitted graphics with knitr/rmarkdown

	Basic knitr/rmarkdown Figure Options
	Chunk options
	Global options

	Knitting R's Default Graphics
	Including ggplot2 Graphics
	Showing regression results with caterpillar plots

	JavaScript Graphs with googleVis
	Basic googleVis figures
	Including googleVis in knitted documents
	JavaScript Graphs with htmlwidgets-based packages

	IV Presentation Documents
	Presenting with LaTeX
	The Basics
	Getting started with LaTeX editors
	Basic LaTeX command syntax
	The LaTeX preamble and body
	Headings
	Paragraphs and spacing
	Horizontal lines
	Text formatting
	Math
	Lists
	Footnotes
	Cross-references

	Bibliographies with BibTeX
	The .bib file
	Including citations in LaTeX documents
	Generating a BibTeX file of R package citations

	Presentations with LaTeX Beamer
	Beamer basics
	knitr with LaTeX slideshows

	Presenting in a Variety of Formats with R Markdown
	The Basics
	Getting started with Markdown editors
	Preamble and document structure
	Headings
	Horizontal lines
	Paragraphs and new lines
	Italics and bold
	Links
	Lists
	Math with MathJax

	Further Customizability with rmarkdown
	CSS style files and Markdown

	Slideshows with Markdown, R Markdown, and HTML
	HTML slideshows with rmarkdown
	LaTeX Beamer slideshows with rmarkdown
	Slideshows with Markdown and RStudio's R Presentations

	Publishing HTML Documents Created with R Markdown
	Further information on R Markdown

	Conclusion
	Citing Reproducible Research
	Licensing Your Reproducible Research
	Sharing Your Code in Packages
	Project Development: Public or Private?
	Is it Possible to Completely Future-Proof Your Research?

	Bibliography
	Index
	

